Modeling High-Frequency Magnetic Coupling Wired Drill Pipe Channel Based on Linear Simulation
-
摘要:
为了延长高频磁耦合有缆钻杆系统无中继器时的传输距离,需要选择载波信号频点和匹配不同长度有缆钻具间的阻抗。为此,建立信道模型进行仿真,以匹配不同长度有缆钻具间的阻抗。建立信道模型时,将传输信道划分为标准电路元件的最小重复单元,其包含同轴电缆和磁耦合线圈副;使用同轴电缆传输线元件仿真同轴电缆,使用物理变压器元件仿真磁耦合线圈副,形成由分布参数元件和集总参数元件组成的易于测量的混合模型。首先根据材料的尺寸、物理参数及仪器测量结果,确定每个元件的参数,并用ADS软件创建标准电路元件模型;再运用散射参数线性仿真进行电路仿真。仿真结果与实际样品的测量结果一致,表明通过建立模型进行仿真可以为高频磁耦合有缆钻杆的优化设计提供依据。高频磁耦合有缆钻杆经过信道建模优化设计,无中继器时的传输距离提高至300 m以上。
Abstract:In order to extend the repeater-free transmission distance of the high-frequency magnetic coupling wired drill pipe system, it is necessary to select the frequency point of carrier signal and match the impedance between wired drill pipes with different lengths. To this end, a simulation was performed by establishing a channel model to match the impedance of wired drill pipes with different lengths. When the channel model was established, the transmission channel could be divided into a minimum repeating unit called the standard circuit component, which consisted of a coaxial cable and a magnetic coupling coil pair. The coaxial cable transmission line was used to simulate the coaxial cable, while the physical transformer component was used to simulate the magnetic coupling coil pair, and an easy-to-measure hybrid model consisting of distributed parameter components and lumped parameter components was established. First, the parameters of each component were determined according to the material size, physical parameters and instrument measurement results, the standard circuit component model was created by ADS software, and then the circuit simulation was performed by linear simulation of scattering parameters. The simulation results were consistent with the measured results of actual sample, which indicated that the model-based simulation could be used to provide a basis for the optimal design of high frequency magnetic coupling wired drill pipe. The high-frequency magnetic coupling wired drill pipe was optimized by channel modeling, and the repeater-free transmission distance was increased to more than 300 m.
-
-
表 1 COAX_MDS元件的参数
Table 1 Structure of the COAX_MDS component
参数 物理含义 取值 r/mm 内导体半径 0.92 Ri/mm 外导体内半径 2.99 Ro/mm 外导体半径 3.58 L/m 长度 5.00 T/mm 镀层厚度 0.1 σ1/(S·m–1) 镀层电导率 5.8×107 σ2/(S·m–1) 基底电导率 1.1×106 μr 电介质相对磁导率 1.0 εr 电介质相对介电常数 2.07 tan δ 电介质损耗角正切值 0.001 -
[1] 中国石油天然气集团公司. 2018年值得关注的10大国外工程技术进展[R]. 北京: 中国石油天然气集团公司经济技术研究院, 2018. China National Petroleum Corporation. Top 10 foreign engineering and technological developments worthy of attention in 2018[R]. Beijing: CNPC Institute of Economic and Technological Research, 2018.
[2] 汪海阁, 葛云华, 石林. 深井超深井钻完井技术现状、挑战和" 十三五”发展方向[J]. 天然气工业, 2017, 37(4): 1–8. WANG Haige, GE Yunhua, SHI Lin. Technologies in deep and ultra-deep well drilling: present status, challenges and future trend in the 13th Five-Year Plan period (2016–2020)[J]. Natural Gas Industry, 2017, 37(4): 1–8.
[3] 杨传书, 张好林, 肖莉. 自动化钻井关键技术进展与发展趋势[J]. 石油机械, 2017, 45(5): 10–17. YANG Chuanshu, ZHANG Haolin, XIAO Li. Key technical progress and development trend of automated drilling[J]. China Petroleum Machinery, 2017, 45(5): 10–17.
[4] 王敏生, 光新军. 定向钻井技术新进展及发展趋势[J]. 石油机械, 2015, 43(7): 12–18. WANG Minsheng, GUANG Xinjun. Advances and trend of directional drilling technology[J]. China Petroleum Machinery, 2015, 43(7): 12–18.
[5] 孙浩玉. 智能钻杆磁感应传输技术及其信道特性分析[J]. 中国石油大学学报(自然科学版), 2013, 37(6): 172–176, 183. SUN Haoyu. Technology of magnetic induction transmission of intelligent drill pipe and its channel characteristics[J]. Journal of China University of Petroleum (Edition of Natural Science), 2013, 37(6): 172–176, 183.
[6] 刘亚军, 孙东奎, 刘锋, 等. 甚低频磁感应波智能钻杆信号传输系统性能分析[J]. 西安石油大学学报(自然科学版), 2017, 32(1): 119–126. doi: 10.3969/j.issn.1673-064X.2017.01.019 LIU Yajun, SUN Dongkui, LIU Feng, et al. Performance analysis of intelligent measurement system while drilling based on the magneto-inductive wave of very low frequency[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2017, 32(1): 119–126. doi: 10.3969/j.issn.1673-064X.2017.01.019
[7] 胡永建, 黄衍福, 石林. 高频磁耦合有缆钻杆信道建模与仿真分析[J]. 石油学报, 2018, 39(11): 1292–1298, 1316. doi: 10.7623/syxb201811009 HU Yongjian, HUANG Yanfu, SHI Lin. Modeling and simulation of high-frequency magnetic coupling wired drill pipe[J]. Acta Petrolei Sinica, 2018, 39(11): 1292–1298, 1316. doi: 10.7623/syxb201811009
[8] 张献, 杨庆新, 陈海燕, 等. 电磁耦合谐振式无线电能传输系统的建模、设计与实验验证[J]. 中国电机工程学报, 2012, 32(21): 153–158. ZHANG Xian, YANG Qingxin, CHEN Haiyan, et al. Modeling and design and experimental verification of contactless power transmission systems via electromagnetic resonant coupling[J]. Proceedings of the Chinese Society for Electrical Engineering, 2012, 32(21): 153–158.
[9] 疏许健, 张波. 感应耦合无线电能传输系统的能量法模型及特性分析[J]. 电力系统自动化, 2017, 41(2): 28–32. SHU Xujian, ZHANG Bo. Energy model and characteristic analysis for inductively coupled power transfer system[J]. Automation of Electric Power Systems, 2017, 41(2): 28–32.
[10] 李艳红, 刘国强, 宋显锦, 等. 宽频磁耦合谐振式无线电能传输系统特性分析[J]. 电工技术学报, 2015, 30(19): 7–11. doi: 10.3969/j.issn.1000-6753.2015.19.002 LI Yanhong, LIU Guoqiang, SONG Xianjin, et al. The study on the characteristics of broadband magnetic coupling resonant wireless power transfer system[J]. Transactions of China Electrotechnical Society, 2015, 30(19): 7–11. doi: 10.3969/j.issn.1000-6753.2015.19.002
[11] 黄学良, 王维, 谭林林. 磁耦合谐振式无线电能传输技术研究动态与应用展望[J]. 电力系统自动化, 2017, 41(2): 2–14. HUANG Xueliang, WANG Wei, TAN Linlin. Technical progress and application development of magnetic coupling resonant wireless power transfer[J]. Automation of Electric Power Systems, 2017, 41(2): 2–14.
[12] 中国石油天然气集团公司. 一种有缆钻杆信道参数的测量方法及系统: CN105604496A[P]. 2016-05-25. China National Petroleum Corporation. A method and system for measuring channel parameters of wired drill pipe: CN105604496A[P]. 2016-05-25.
[13] 高奇峰, 杨兆建, 何吉利. 分离式变压器电磁结构与参数分析[J]. 电力自动化设备, 2009, 29(9): 141–144. doi: 10.3969/j.issn.1006-6047.2009.09.032 GAO Qifeng, YANG Zhaojian, HE Jili. Electromagnetic structure and parameter analysis of separated transformer[J]. Electric Power Automation Equipment, 2009, 29(9): 141–144. doi: 10.3969/j.issn.1006-6047.2009.09.032
[14] RADMANESH M M. 射频与微波电子学[M]. 顾继慧, 李鸣, 译. 北京: 电子工业出版社, 2012: 108. RADMANESH M M. Radio frequency and microwave electronics illustrated[M]. GU Jihui, LI Ming, translated. Beijing: Publishing House of Electronic Industry, 2012: 108.
[15] 倪艳荣. 通信电缆结构设计[M]. 北京: 机械工业出版社, 2013: 86. NI Yanrong. Design of communication cable structure[M]. Beijing: China Machine Press, 2013: 86.
[16] JOHNSON Howard, GRAHAM Martin. 高速信号传输[M]. 邓晖, 译. 北京: 电子工业出版社, 2012: 336. JOHNSON Howard, GRAHAM Martin. High-speed signal propagation advanced black magic[M]. DENG Hui, translated. Beijing: Publishing House of Electronics Industry, 2012: 336.
[17] 董纪清, 陈为, 卢增艺. 开关电源高频变压器电容效应建模与分析[J]. 中国电机工程学报, 2007, 27(31): 121–126. doi: 10.3321/j.issn:0258-8013.2007.31.020 DONG Jiqing, CHEN Wei, LU Zengyi. Modeling and analysis of capacitive effects in high-frequency transformer of SMPS[J]. Proceedings of the Chinese Society for Electrical Engineering, 2007, 27(31): 121–126. doi: 10.3321/j.issn:0258-8013.2007.31.020
[18] LEE T H.平面微波工程: 理论、测量与电路[M]. 余志平, 孙玲玲, 王皇, 译. 北京: 清华大学出版社, 2014: 112. LEE T H. Planer microwave engineering: a practical guide to theory, measurements and circuits[M]. YU Zhiping, SUN Lingling, WANG Huang, translated. Beijing: Tsinghua University Press, 2014: 112.
[19] 黄玉兰, 常树茂. 物联网: ADS射频电路仿真与实例详解[M]. 北京: 人民邮电出版社, 2011: 16-17. HUANG Yulan, CHANG Shumao. ADS detailed annotation on RF circuit simulation [M].Beijing: Posts & Telecom Press, 2011: 16-17.
[20] 徐兴福. ADS2011射频电路设计与仿真实例[M]. 北京: 电子工业出版社, 2016: 1. XU Xingfu. ADS2011 RF circuit design and simulation example [M]. Beijing: Publishing House of Electronics Industry, 2016: 1.