Laboratory Tests on the Rock Breaking Effects of Plasma Torch and Suggestions for Field Application
-
摘要:
油气资源和深层地热能开发钻井过程中会遇到岩石硬度大、可钻性差等问题,采用传统钻井技术难以提高钻井效率。针对这一问题,分析了等离子炬的破岩原理,认为等离子炬破岩主要有岩石破碎、熔化和蒸发等方式;利用不同厚度的玄武岩和花岗岩岩样,进行了等离子炬破岩效果室内试验,证明等离子炬可以烧穿50 mm厚的玄武岩岩样和30 mm厚的花岗岩岩样,但不能烧穿更厚的岩样。结合试验结果,分析了现场应用等离子炬钻井技术存在的问题,提出了研发建议。研究结果为深层硬地层等离子炬钻井技术的研究与应用提供了技术借鉴。
Abstract:During the development and drilling of oil and gas resources and deep geothermal energy, many problems such as extremely high rock hardness and poor drillability may be encountered, and it is difficult to improve drilling efficiency by traditional drilling techniques. To solve this problem, the principle underlying rock breaking by plasma torch were analyzed. On the basis of it, rock spallation, melting, and evaporation were found to be the main methods for rock breaking. Laboratory tests were carried out to determine the effect of using plasma torch for breaking basalt samples and granite samples with different thicknesses. It was demonstrated that plasma torch can burn through 50 mm thick basalt sample and 30 mm thick granite sample, but could not burn through thicker rock samples. Combined with the test results, the problems existing in the field application of plasma torch drilling technology were analyzed, and research and development suggestions were thereby advanced. The results of this study can provide reference for the research and application of plasma torch drilling in deep hard formations.
-
Keywords:
- plasma torch /
- rock breaking /
- laboratory test /
- high temperature jet /
- suggestions on application
-
-
表 1 岩石熔化和蒸发所需要的能量
Table 1 Energy required for rock melting and evaporation
岩石 熔化温度/℃ 蒸发温度/℃ 熔化比能/
(kJ·cm−3)蒸发比能/
(kJ·cm−3)花岗岩 1 215~1 260 2 960~3 230 4.3~4.4 25.7~28.4 玄武岩 984~1 260 2 960~3 230 4.0~4.8 24.7~27.5 表 2 等离子炬破岩试验数据及计算的热能效率
Table 2 Test data of rock breaking by plasma torch and calculated thermal energy efficiency
岩样 孔径/mm 孔深/mm 烧穿时间/s 热能效率,% 30 kW 50 kW 30 kW 50 kW 30 kW 50 kW 30 kW 50 kW 50 mm厚玄武岩 39 43 50 50 140 112 6.2 5.7 100 mm厚玄武岩 56 58 63 74 30 mm厚花岗岩 34 36 30 30 103 68 3.8 3.9 100 mm厚花岗岩 53 68 51 59 -
[1] 万树德,汪海. 电弧等离子体冶金技术的实际应用[J]. 材料与冶金学报,2013,12(2):81–88. WAN Shude, WANG Hai. Application of arc plasma metallurgy technology[J]. Journal of Materials and Metallurgy, 2013, 12(2): 81–88.
[2] ONO K, LIU Zhongjie, ERA T, et al. Development of a plasma MIG welding system for aluminium[J]. Welding International, 2009, 23(11): 805–809. doi: 10.1080/09507110902836945
[3] 陈明,李琴. 等离子切割工艺在电站锅炉施工中的应用[J]. 电力建设,2014,35(2):120–124. doi: 10.3969/j.issn.1000-7229.2014.02.024 CHEN Ming, LI Qin. Application of plasma cutting process in power plant boiler construction[J]. Electric Power Construction, 2014, 35(2): 120–124. doi: 10.3969/j.issn.1000-7229.2014.02.024
[4] 邓春明,周克崧,刘敏,等. 低压等离子喷涂氧化铝涂层的特性[J]. 无机材料学报,2009,24(1):117–121. doi: 10.3724/SP.J.1077.2009.00117 DENG Chunming, ZHOU Kesong, LIU Min, et al. Characteristics of low pressure plasma sprayed alumina coating[J]. Journal of Inorganic Materials, 2009, 24(1): 117–121. doi: 10.3724/SP.J.1077.2009.00117
[5] 孙成伟,沈洁,任雪梅,等. 等离子气化技术用于固体废物处理的研究进展[J]. 物理学报,2021,70(9):095210. doi: 10.7498/aps.70.20201676 SUN Chengwei, SHEN Jie, REN Xuemei, et al. Research progress of plasma gasification technology for solid waste treatment[J]. Acta Physica Sinica, 2021, 70(9): 095210. doi: 10.7498/aps.70.20201676
[6] 张璐,严建华,杜长明,等. 热等离子体熔融固化模拟医疗废物的研究[J]. 环境科学,2012,33(6):2104–2109. ZHANG Lu, YAN Jianhua, DU Changming, et al. Study on vitrification of simulated medical wastes by thermal plasma[J]. Environmental Science, 2012, 33(6): 2104–2109.
[7] TIMOSHKIN I V, MACKERSIE J W, MACGREGOR S J. Plasma channel microhole drilling technology[C]//Digest of Technical Papers. PPC-2003. 14th IEEE International Pulsed Power Conference (IEEE Cat. No. 03CH37472), Dallas: IEEE, 2003: 1336-1339.
[8] 张金龙,郭先敏,蔡西茂,等. 等离子通道钻井技术[J]. 石油钻探技术,2013,41(4):64–68. doi: 10.3969/j.issn.1001-0890.2013.04.014 ZHANG Jinlong, GUO Xianmin, CAI Ximao, et al. Plasma channel drilling technology[J]. Petroleum Drilling Techniques, 2013, 41(4): 64–68. doi: 10.3969/j.issn.1001-0890.2013.04.014
[9] KOCIS I, KRISTOFIC T, GAJDOS M, et al. Utilization of electrical plasma for hard rock drilling and casing milling[R]. SPE 173016, 2015.
[10] KOCIS I, KOCIS I, KRISTOFIC T, et al. Method of disintegrating rock by melting and by synergism of water streams: US 2015/0047901 A1[P]. 2015-02-19.
[11] MACGREGOR S J, TURNBULL S M. Plasma channel drilling process: US7270195 B2[P]. 2007-09-18.
[12] 陈世和,麻胜荣,邹文洁. 等离子技术在矿山中的应用[J]. 铀矿冶,2006,25(4):173–176. doi: 10.3969/j.issn.1000-8063.2006.04.002 CHEN Shihe, MA Shengrong, ZOU Wenjie. Application of plasma technology in mines[J]. Uranium Mining and Metallurgy, 2006, 25(4): 173–176. doi: 10.3969/j.issn.1000-8063.2006.04.002
-
期刊类型引用(12)
1. 陈建国,汪伟,都伟超. 渝西大安区块超深层页岩气水平井钻井提速关键技术研究. 钻探工程. 2024(04): 154-162 . 百度学术
2. 龙志平,陈士奎,曹建山,丁锦鹤. 小井眼钻井技术在页岩气井的实践与认识. 石油机械. 2023(04): 30-38 . 百度学术
3. 杨哲,李晓平,万夫磊. 四川长宁页岩气井身结构优化探讨. 钻采工艺. 2021(03): 20-23 . 百度学术
4. 王建龙,于志强,苑卓,冯冠雄,柳鹤,郭云鹏. 四川盆地泸州区块深层页岩气水平井钻井关键技术. 石油钻探技术. 2021(06): 17-22 . 本站查看
5. 石崇东,王万庆,史配铭,杨勇. 盐池区块深层页岩气水平井钻井关键技术研究. 石油钻探技术. 2021(06): 23-28 . 本站查看
6. 郑德帅. 可旋转钻柱定向钻进工具设计及测试. 石油钻探技术. 2021(06): 81-85 . 本站查看
7. 孙焕泉,周德华,蔡勋育,王烽,冯动军,卢婷. 中国石化页岩气发展现状与趋势. 中国石油勘探. 2020(02): 14-26 . 百度学术
8. 史配铭,薛让平,王学枫,王万庆,石崇东,杨勇. 苏里格气田致密气藏水平井优快钻井技术. 石油钻探技术. 2020(05): 27-33 . 本站查看
9. 彭兴,周玉仓,龙志平,张树坤. 南川地区页岩气水平井优快钻井技术进展及发展建议. 石油钻探技术. 2020(05): 15-20 . 本站查看
10. 徐云龙,张居波,席境阳,赵洪山. 焦页XX-HF井近钻头仪器“落鱼”打捞技术. 探矿工程(岩土钻掘工程). 2019(12): 35-39 . 百度学术
11. 刘伟,何龙,胡大梁,李文生,焦少卿. 川南海相深层页岩气钻井关键技术. 石油钻探技术. 2019(06): 9-14 . 本站查看
12. 窦玉玲,唐志军,徐云龙,席镜阳. 涪陵江东区块三维水平井优快钻井技术——以焦页91平台为例. 探矿工程(岩土钻掘工程). 2019(02): 55-59 . 百度学术
其他类型引用(3)