Optimized Fast Drilling Technology for Horizontal Wells in the Tight Gas Reservoirs in Sulige Gas Field
-
摘要: 苏里格气田致密气藏水平井钻井时存在机械钻速低、地层井漏坍塌漏并存、钻井周期长等问题。为此,在分析钻遇地层情况和钻井技术难点的基础上,开展了 “工厂化”水平井钻井模式优化、“高效PDC钻头+大功率螺杆”激进参数钻井技术、不同偏移距井眼轨迹控制模式优化和强抑制低密度CQSP-4防塌钻井液分段优化等研究,形成了苏里格气田致密气藏水平井优快钻井技术。2019年苏里格气田应用致密气藏水平井优快钻井技术完钻56口井,平均机械钻速12.76 m/h,钻井周期39.12 d,建井周期52.20 d,较2018年平均机械钻速提高了23.16%,钻井周期缩短了23.71%,建井周期缩短了16.02%。研究与应用表明,苏里格气田致密气藏水平井钻井关键技术提速效果显著,为苏里格气田致密气藏高效开发提供了技术支撑。Abstract: Problems occur when drilling horizontal wells in the tight gas reservoirs in Sulige Gas Field. They include low ROP, contradiction between formation collapse and lost circulation, long drilling cycles, etc. By analyzing the formation drilling challenges, technical research of factory drilling of horizontal wells was conducted to determine the best path forward. The areas studied included drilling mode optimization, “high efficiency PDC bit + high-power PDM” aggressive drilling technology, mode optimization of wellbore trajectory control technology with different offsets and sectional optimization of strongly inhibitive low-density CQSP-4 anti-collapse drilling fluid system. After the study was completed, recommendations were made regarding forming a new optimized fast drilling technology for horizontal wells in the tight gas reservoirs in Sulige Gas Field. In 2019, this technology was applied in 56 wells in Sulige Gas Field, with an average ROP of 12.76 m/h, an average drilling cycle of 39.12 days, and a well construction period of 52.20 days. Compared with those in 2018, in 2019 the ROP increased by 23.16%, the drilling cycle was shortened by 23.71% and the well construction period was reduced by 16.02%. The research and application showed that the key technology for horizontal wells drilling in the tight gas reservoirs in Sulige Gas Field had a remarkable effect on drilling acceleration, which provided technical support and the basis for best practices for the efficient development of the tight gas reservoirs in Sulige Gas Field.
-
Keywords:
- tight gas reservoir /
- horizontal well /
- factorization /
- aggressive drilling /
- hole trajectory /
- Sulige Gas Field
-
-
表 1 苏里格气田靖72-68H2井井身结构优化设计结果
Table 1 Results of optimized casing program design of Well Jing 72-68H2 in Sulige Gas Field
开钻次序 钻头直径/mm 井深/m 套管直径/mm 套管下入地层层位 套管下入深度/m 水泥浆返高 导管 444.5 50 426.4 第四系 50 地面 一开 346.3 500 273.1 安定组 500 地面 二开 228.0 3 290 177.8 石盒子组 3 286 地面 三开 152.4 5 209 114.3 石盒子组 5204 气层以上500 m 表 2 螺杆型号分段优选结果
Table 2 Results of sectional optimization of PDM type
井段 螺杆型号 级数 工作扭矩/(kN·m) 压降/MPa 最大压降/MPa 排量/(m3·min–1) 转速/(r·min–1) 功率/kW 直井段和纠偏段 7LZ185X7.0-5 5 10.65 5.6 7.49 1.82 140 145 斜井段 7LZ165X7.0L-4 4 8.30 3.2 4.28 1.64 108 93 水平段 7LZ127X7.0L-3 3 3.47 2.4 3.14 1.04 130 45 表 3 激进钻井参数优选结果
Table 3 Optimization results of aggressive drilling parameters
井眼直径/mm 井段 地层 转速/(r·min–1) 钻压/kN 钻井液排量/(L·s–1) 钻井液返速/(m·s–1) 228.6 直井段和纠偏井段 二开—刘家沟组 70~80 140~220 38~46 1.35~1.63 215.9 斜井段 刘家沟组—石盒子组 60~70 120~200 35~38 1.46~1.58 152.4 水平段 石盒子组 50~60 100~140 15~19 1.48~1.88 表 4 不同弯角螺杆在不同井斜区间的增斜规律
Table 4 Deviation increasing rule of screw with different bending angle in different well deviation interval
井斜角/(°) 复合增斜率/((°)·(100m) –1) 滑动增斜率/((°)·(100m) –1) 7LZ165X1.50°螺杆 7LZ165X1.75°螺杆 7LZ165X1.50°螺杆 7LZ165X1.75°螺杆 0~20 9.99 13.32 21.65 23.64 20~30 11.66 14.99 18.32 21.65 30~50 13.99 21.65 17.32 26.64 50~70 14.99 24.98 22.64 36.63 70~89 24.98 31.64 31.64 39.96 平均 15.12 21.31 22.31 29.70 表 5 靖100-21H2井水平段水力振荡器使用效果对比
Table 5 Comparison on the effects of hydro-oscillators used in horizontal section of Well Jing 100-21H2
井段/m 岩性 滑动进尺/
m滑动纯钻时间/
h滑动机械钻速/
(m·h–1)复合进尺/
m复合纯钻时间/
h复合机械钻速/
(m·h–1)备注 4 150~4 226 灰色泥岩 5.00 6 0.83 71.00 28 2.54 未用振荡器 4 226~4 394 灰色泥岩 8.00 8 1.00 160.00 38 4.20 使用振荡器 4 394~5 012 泥质砂岩 50.00 27 1.85 568.00 78 7.28 使用振荡器 表 6 2018—2019年完钻水平井技术参数对比
Table 6 Comparison on technical parameters of horizontal wells completed in 2018–2019
年份 完钻井数 进尺/m 平均井深/m 平均钻井周期/d 平均完井周期/d 平均建井周期/d 平均机械钻速/(m·h–1) 2019 56 257 618 4 700 39.12 6.79 52.62 12.76 2018 37 188 302 4 962 51.28 7.86 62.65 10.36 -
[1] 李传武,兰凯,杜小松,等. 川南页岩气水平井钻井技术难点与对策[J]. 石油钻探技术, 2020, 48(3): 16–21. doi: 10.11911/syztjs.2020055 LI Chuanwu, LAN Kai, DU Xiaosong, et al. Difficulties and countermeasures in horizontal well drilling for shale gas in Southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(3): 16–21. doi: 10.11911/syztjs.2020055
[2] 黄兴龙,徐阳,曾彦强,等. 玛131井区低渗透砂砾岩油藏水平井优化设计研究[J]. 特种油气藏, 2018, 25(3): 97–101. doi: 10.3969/j.issn.1006-6535.2018.03.019 HUANG Xinglong, XU Yang, ZENG Yanqiang, et al. Horizontal well optimization and design of low-permeability glutenite reservoir in Wellblock Ma131[J]. Special Oil & Gas Reservoirs, 2018, 25(3): 97–101. doi: 10.3969/j.issn.1006-6535.2018.03.019
[3] 杨海平. 涪陵平桥与江东区块页岩气水平井优快钻井技术[J]. 石油钻探技术, 2018, 46(3): 13–19. YANG Haiping. Optimized and fast drilling technology for horizontal shale gas wells in Pingqiao and Jiangdong Blocks of Fuling Area[J]. Petroleum Drilling Techniques, 2018, 46(3): 13–19.
[4] 路宗羽,赵飞,雷鸣,等. 新疆玛湖油田砂砾岩致密油水平井钻井关键技术[J]. 石油钻探技术, 2019, 47(2): 9–14. doi: 10.11911/syztjs.2019029 LU Zongyu, ZHAO Fei, LEI Ming, et al. Key technologies for drilling horizontal wells in glutenite tight oil reservoirs in the Mahu Oilfield of Xinjiang[J]. Petroleum Drilling Techniques, 2019, 47(2): 9–14. doi: 10.11911/syztjs.2019029
[5] 秦文政,党军,臧传贞,等. 玛湖油田玛18井区“工厂化”水平井钻井技术[J]. 石油钻探技术, 2012, 34(4): 7–11. doi: 10.3969/j.issn.1001-0890.2012.04.002 QIN Wenzheng, DANG Jun, ZANG Chuanzhen, et al. Factorization drilling technology of the horizontal well in the Ma18 Well Block of the Mahu Oilfield[J]. Oil Drilling & Production Technology, 2012, 34(4): 7–11. doi: 10.3969/j.issn.1001-0890.2012.04.002
[6] 李洪,邹灵战,汪海阁,等. 玛湖致密砂砾2000m水平段水平井优快钻完井技术[J]. 石油钻采工艺, 2017, 39(1): 47–52. LI Hong, ZOU Lingzhan, WANG Haige, et al. High-quality fast drilling and completion technologies for horizontal wells with horizontal section of 2 000 m long in Mahu tight glutenites[J]. Oil Drilling & Production Technology, 2017, 39(1): 47–52.
[7] 王敏生,光新军,耿黎东. 页岩油高效开发钻井完井关键技术及发展方向[J]. 石油钻探技术, 2019, 47(5): 1–10. WANG Minsheng, GUANG Xinjun, GENG Lidong. Key drilling/completion technologies and development trends in the efficient development of shale oil[J]. Petroleum Drilling Techniques, 2019, 47(5): 1–10.
[8] 伍贤柱. 四川盆地威远页岩气藏高效开发关键技术[J]. 石油钻探技术, 2019, 47(4): 1–9. doi: 10.11911/syztjs.2019074 WU Xianzhu. Key technologies in the efficient development of the Weiyuan Shale Gas Reservoir, Sichuan Basin[J]. Petroleum Drilling Techniques, 2019, 47(4): 1–9. doi: 10.11911/syztjs.2019074
[9] 史配铭,肖春学,王建军. 苏里格南部气田大斜度井钻井技术[J]. 石油钻采工艺, 2019, 41(1): 18–22. SHI Peiming, XIAO Chunxue, WANG Jianjun. Drilling technologies used for the highly deviated wells in Southern Sulige Gas-field[J]. Oil Drilling & Production Technology, 2019, 41(1): 18–22.
[10] 王建龙,徐旺,郭耀,等. 苏里格气田苏25区块水平井钻井关键技术[J]. 长江大学学报(自然科学版), 2019, 16(7): 26–30. WANG Jianlong, XU Wang, GUO Yao, et al. Key technology of horizontal well drilling in Block Su25 of Sulige Gas Field[J]. Journal of Yangtze University(Natural Science Edition), 2019, 16(7): 26–30.
[11] 叶成林. 苏53区块工厂化钻井完井关键技术[J]. 石油钻探技术, 2015, 43(5): 129–134. YE Chenglin. Key technologies of factory drilling and completion in Su 53 Block[J]. Petroleum Drilling Techniques, 2015, 43(5): 129–134.
[12] 张富成,王卫忠,扈东勇,等. 苏里格气田丛式井钻井技术及应用[J]. 石油钻采工艺, 2009, 31(4): 36–39, 52. ZHANG Fucheng,WANG Weizhong,HU Dongyong,et al. Cluster wells drilling technology and its application in Sulige Gas Field[J]. Oil Drilling & Production Technology, 2009, 31(4): 36–39, 52.
[13] 柳伟荣,倪华峰,王学枫,等. 长庆油田陇东地区页岩油超长水平段水平井钻井技术[J]. 石油钻探技术, 2020, 48(1): 9–14. doi: 10.11911/syztjs.2020029 LIU Weirong, NI Huafeng, WANG Xuefeng, et al. Shale oil horizontal drilling technology with super-long horizontal laterals in the Longdong Region of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(1): 9–14. doi: 10.11911/syztjs.2020029
[14] 解经宇,高学生,李伟. 长庆气田水平井优快钻井配套技术[J]. 石油钻采工艺, 2015, 37(5): 30–33. XIE Jingyu, GAO Xuesheng, LI Wei. Matching technology for optimized fast drilling of horizontal wells in Changqing Gasfield[J]. Oil Drilling & Production Technology, 2015, 37(5): 30–33.
[15] 胡大梁,欧彪,,何龙,等. 川西海相超深大斜度井井身结构优化及钻井配套技术[J]. 石油钻探技术, 2020, 48(3): 22–28. doi: 10.11911/syztjs.2020053 HU Daliang, OU Biao, HE Long, et al. Casing program optimization and drilling matching technologies for marine ultra-deep highly deviated wells in Western Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(3): 22–28. doi: 10.11911/syztjs.2020053
[16] 邢星,吴玉杰,张闯,等. 超深水平井钻井水力参数优选[J]. 断块油气田, 2020, 27(3): 381–385. XING Xing, WU Yujie, ZHANG Chuang, et al. Optimization of drilling hydraulic parameters for ultra-deep horizontal well[J]. Fault-Block Oil & Gas Field, 2020, 27(3): 381–385.
[17] 杨鹏. 井工厂化作业钻井液关键技术[J]. 特种油气藏, 2019, 26(2): 10–15. doi: 10.3969/j.issn.1006-6535.2019.02.002 YANG Peng. Key technology of drilling fluid for well factory-like operation[J]. Special Oil & Gas Reservoirs, 2019, 26(2): 10–15. doi: 10.3969/j.issn.1006-6535.2019.02.002
[18] 陈华. 苏里格气田水平井斜井段防漏防塌钻井液技术[J]. 钻井液与完井液, 2018, 35(1): 66–70. doi: 10.3969/j.issn.1001-5620.2018.01.013 CHEN Hua. Drilling fluid technology for mud loss control and borehole wall stabilization in the slant section of horizontal wells in Sulige Gas Field[J]. Drilling Fluid & Completion Fluid, 2018, 35(1): 66–70. doi: 10.3969/j.issn.1001-5620.2018.01.013
-
期刊类型引用(2)
1. 王善哲,张宏奇,李忠诚,刘书孟,程铁航,周跃斌,孙璞,王禹祁. 大庆萨南油田零碳站场建设工艺. 油气储运. 2025(03): 325-333 . 百度学术
2. 李子欣. 能源转型背景下京津冀地区天然气与氢能融合发展分析. 城市燃气. 2025(05): 48-52 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 1013
- HTML全文浏览量: 278
- PDF下载量: 180
- 被引次数: 2