吴泽兵,袁若飞,张文溪,等. 基于多目标遗传算法的PDC复合片交界结构优化设计[J]. 石油钻探技术,2024,52(0):1-10. DOI: 10.11911/syztjs.2024068
引用本文: 吴泽兵,袁若飞,张文溪,等. 基于多目标遗传算法的PDC复合片交界结构优化设计[J]. 石油钻探技术,2024,52(0):1-10. DOI: 10.11911/syztjs.2024068
WU Zebing, YUAN Ruofei, ZHANG Wenxi, et al. Optimization Design of the Interface Structure for PDC Composite Sheets Based on Multi-Objective Genetic Algorithms[J]. Petroleum Drilling Techniques, 2024, 52(0):1-10. DOI: 10.11911/syztjs.2024068
Citation: WU Zebing, YUAN Ruofei, ZHANG Wenxi, et al. Optimization Design of the Interface Structure for PDC Composite Sheets Based on Multi-Objective Genetic Algorithms[J]. Petroleum Drilling Techniques, 2024, 52(0):1-10. DOI: 10.11911/syztjs.2024068

基于多目标遗传算法的PDC复合片交界结构优化设计

Optimization Design of the Interface Structure for PDC Composite Sheets Based on Multi-Objective Genetic Algorithms

  • 摘要: 为改善PDC复合片界面处的结合能力,提升其整体的抗冲击性和稳定性,提出一种新型交界结构。使用有限元方法,对比了外界应力影响下所设计交界结构和常规界面结构的复合片应力分布状态,并基于提出的交界结构,考虑其结构参数的影响,使用最优填充空间法进行采样,结合最小二乘法构建了结构场的二阶响应面近似模型;以交界结构参数为设计变量,结构场等效应力、最大剪应力、最大主应力最大值为设计目标,采用多目标遗传算法对响应面近似模型进行优化。结果表明,相同模拟条件下,相比常规交界结构,新型交界结构的等效应力最大值减小50.7%,剪应力最大值减小52%,最大主应力减小22.4%。优化后的复合片在相同条件下,等效应力、最大剪应力及最大主应力最大值均降低14%以上,且具有更好的破岩稳定性,能有效避免应力集中,同时热稳定性增强。研究结果为PDC复合片优化提供了设计参数和理论依据,同时提供了新的优化方法,有助于降低研发成本。

     

    Abstract: A novel interface structure is proposed to enhance the bonding strength at the interface of PDC composite sheetss and improve their overall impact resistance and robustness. The finite element method compares the stress distribution within the composite sheets designed with the novel interface structure and the conventional interface structure under external stress conditions. Based on the proposed interface structure, considering the influence of its structural parameters, an optimal filling space method is utilized for sampling. In conjunction with the least squares method, a second-order response surface approximation model of the structural field is constructed, with the interface structure parameters as design variables. The maximum equivalent stress, maximum shear stress, and maximum principal stress in the structural field are set as design objectives. A multi-objective genetic algorithm is then applied to optimize the response surface approximation model. The results indicate that under the same simulation conditions, compared to the conventional interface structure, the proposed novel interface structure reduces the maximum equivalent stress by 50.7%, the maximum shear stress by 52%, and the maximum principal stress by 22.4%. For the optimized composite sheets under the same conditions, the maximum values of the equivalent stress, maximum shear stress, and maximum principal stress are all reduced by more than 14%. The optimized PDC composite sheets exhibit improved rock-breaking stability, effectively avoid stress concentration, and enhance thermal stability. The findings provide design parameters and a theoretical basis for the optimization of PDC composite sheets and also introduce a novel optimization method that can help reduce research and development costs.

     

/

返回文章
返回