基于CO2提高采收率的海上CCUS完整性挑战与对策

霍宏博, 刘东东, 陶林, 王德英, 宋闯, 何世明

霍宏博,刘东东,陶林,等. 基于CO2提高采收率的海上CCUS完整性挑战与对策[J]. 石油钻探技术,2023, 51(2):74-80. DOI: 10.11911/syztjs.2023009
引用本文: 霍宏博,刘东东,陶林,等. 基于CO2提高采收率的海上CCUS完整性挑战与对策[J]. 石油钻探技术,2023, 51(2):74-80. DOI: 10.11911/syztjs.2023009
HUO Hongbo, LIU Dongdong, TAO Lin, et al. Integrity challenges and countermeasures of the offshore CCUS based on CO2-EOR [J]. Petroleum Drilling Techniques,2023, 51(2):74-80. DOI: 10.11911/syztjs.2023009
Citation: HUO Hongbo, LIU Dongdong, TAO Lin, et al. Integrity challenges and countermeasures of the offshore CCUS based on CO2-EOR [J]. Petroleum Drilling Techniques,2023, 51(2):74-80. DOI: 10.11911/syztjs.2023009

基于CO2提高采收率的海上CCUS完整性挑战与对策

基金项目: 中海石油(中国)有限公司综合科研项目“渤中19-6凝析气田开发钻完井关键技术研究及应用-I期”(编号:YXKY-2020-TJ-03)资助
详细信息
    作者简介:

    霍宏博(1985—),男,河北衡水人,2009年毕业于西南石油大学石油工程专业,2013年获西南石油大学石油与天然气工程专业硕士学位,在读博士研究生,高级工程师,主要从事海洋油气工程设计及研究工作。E-mail:okoh2006@163.com

  • 中图分类号: TE349

Integrity Challenges and Countermeasures of the Offshore CCUS Based on CO2-EOR

  • 摘要:

    利用CO2提高海上油气田的采收率,既能提高油气资源利用率,又有利于区域CO2的捕捉封存,但海上油气井长期安全性是CCUS的关键因素,理论和技术亟待完善。在分析、总结国内外海上油气田CCUS井筒完整性关键技术的基础上,分析了制约浅海油田CCUS井筒完整性的技术挑战,研究了碳封存井固井、碳封存套管外腐蚀研究及预防、碳封存水岩反应井筒堵塞及井筒环境监测诊断等方面的技术,并从国家“双碳”目标、EOR/EGR技术需求及国内外新进技术经验等方面展望了我国浅海油气田CCUS的开发前景。虽然我国已初步具备开展海上CCUS的能力,仍需要在高韧性防CO2腐蚀水泥浆体系、低成本防腐选材、井筒高效除垢解堵工艺、CO2泄漏监测技术和地下圈闭三维应力场研究等方面加强技术攻关,以提高我国的CCUS应用水平。

    Abstract:

    CO2 can be used to improve the recovery efficiency of offshore oil and gas fields. Not only does it increase the utilization rate of oil and gas resources but it also helps capture and store regional CO2. The long-term safety of offshore oil and gas wells is a key factor for carbon capture, utilization, and storage(CCUS), but corresponding theories and technologies need to be improved. By analyzing and summarizing key technologies of CCUS wellbore integrity in offshore oil and gas fields both in China and abroad, the technical challenges that restrict CCUS wellbore integrity in shallow offshore oil fields were analyzed. The studies covered cementing of carbon sequestration wells, research and prevention of carbon sequestration casing corrosion, carbon sequestration wellbore plugging caused by water-rock reaction, wellbore environment monitoring and diagnosis, and other technologies. In addition, the development prospect of CCUS in shallow offshore oil and gas fields was predicted in consideration of the national target of carbon peaking and carbon neutrality goals, enhanced oil recovery(EOR)/enhanced gas recovery(EGR) technology requirements, and experience of new domestic and foreign technologies. Although China is preliminarily capable of carrying out offshore CCUS, technology research should be strengthened in the aspects of high-strength CO2 corrosion-resistant cement slurry systems, low-cost anticorrosive material selections, high-efficient wellbore descaling and plugging processes, CO2 leakage monitoring technology, and three-dimensional stress field research of underground traps, so as to improve its CCUS application level.

  • 图  1   CO2提高采收率基本原理

    Figure  1.   Basic principle of CO2-EOR

    图  2   井筒腐蚀特征和失效形式

    Figure  2.   Corrosion feature and failure form of wellbore integrity

    表  1   国内外抗CO2腐蚀水泥浆体系防腐指标

    Table  1   Anticorrosive index of CO2 corrosion-resistant cement slurry system at home and abroad

    体系名称试验条件30 d腐蚀深度/mm
    神华CCS项目[22]温度120 ℃,分压7.0 MPa2.50
    南海防腐蚀体系[23]温度210 ℃,分压9.0 MPa0.25
    印尼BD气田[24]温度150 ℃,分压3.5 MPa0.50
    下载: 导出CSV
  • [1] 王敏生,姚云飞. 碳中和约束下油气行业发展形势及应对策略[J]. 石油钻探技术,2021,49(5):1–6.

    WANG Minsheng, YAO Yunfei. Development situation and countermeasures of the oil and gas industry facing the challenge of carbon neutrality[J]. Petroleum Drilling Techniques, 2021, 49(5): 1–6.

    [2]

    WINSLOW D. Industry experience with CO2 for enhanced oil recovery[R]. Richmond: Chevron, 2012.

    [3] 李杉. 大庆油田徐深气田耐CO2腐蚀套管优选[J]. 石油钻探技术,2016,44(6):55–59.

    LI Shan. Casing optimization for CO2 corrosion resistance in the Xushen Gas Field[J]. Petroleum Drilling Techniques, 2016, 44(6): 55–59.

    [4] 江怀友,沈平平,卢颖,等. CO2提高世界油气资源采收率现状研究[J]. 特种油气藏,2010,17(2):5–10.

    JIANG Huaiyou, SHEN Pingping, LU Ying, et al. Present situation of enhancing hydrocarbon recovery factor by CO2[J]. Special Oil & Gas Reservoirs, 2010, 17(2): 5–10.

    [5] 吴俊霞,伊伟锴,孙鹏,等. 文23储气库封堵井完整性保障技术[J]. 石油钻探技术,2022,50(5):57–62. doi: 10.11911/syztjs.2022027

    WU Junxia, YI Weikai, SUN Peng, et al. Integrity assurance technologies for plugged wells in Wen 23 Gas Storage[J]. Petroleum Drilling Techniques, 2022, 50(5): 57–62. doi: 10.11911/syztjs.2022027

    [6] 宋闯,张晓诚,谢涛,等. 渤海 “三高” 气井环空早期圈闭压力预测[J]. 石油学报,2022,43(5):694–707.

    SONG Chuang, ZHANG Xiaocheng, XIE Tao, et al. Prediction of early annular trap pressure of three-high gas wells in Bohai Sea[J]. Acta Petrolei Sinica, 2022, 43(5): 694–707.

    [7] 罗二辉,胡永乐,李保柱,等. 中国油气田注CO2提高采收率实践[J]. 特种油气藏,2013,20(2):1–7.

    LUO Erhui, HU Yongle, LI Baozhu, et al. Practices of CO2 EOR in China[J]. Special Oil & Gas Reservoirs, 2013, 20(2): 1–7.

    [8] 蔡珺君,张毅,董翱,等. 提升气藏工程矿场应用水平的“1+4”模式[J]. 断块油气田,2022,29(3):364–372.

    CAI Junjun, ZHANG Yi, DONG Ao, et al. “1+4” mode to improve the field application level of gas reservoir engineering[J]. Fault-Block Oil & Gas Field, 2022, 29(3): 364–372.

    [9] 刘雪雁,李鹏春,周蒂,等. 南海北部珠江口盆地惠州21-1油田CO2-EOR与碳封存潜力快速评价[J]. 海洋地质前沿,2017,33(3):56–65.

    LIU Xueyan, LI Pengchun, ZHOU Di, et al. Quick assessment of CO2-EOR and CO2 sequestration potential in Huizhou 21-1 Oilfield, Pearl River Mouth Basin, northern South China Sea[J]. Marine Geology Frontiers, 2017, 33(3): 56–65.

    [10] 张志超,柏明星,陈巧珍. 二氧化碳埋存井筒的腐蚀行为影响因素[J]. 腐蚀与防护,2021,42(4):54–57.

    ZHANG Zhichao, BAI Mingxing, CHEN Qiaozhen. Influencing factors of corrosion behavior of carbon dioxide storage wellbore[J]. Corrosion and Protection, 2021, 42(4): 54–57.

    [11] 张智,李炎军,张超,等. 高温含CO2气井的井筒完整性设计[J]. 天然气工业,2013,33(9):79–86.

    ZHANG Zhi, LI Yanjun, ZHANG Chao, et al. Wellbore integrity design of high-temperature gas wells containing CO2[J]. Natural Gas Industry, 2013, 33(9): 79–86.

    [12] 郭建强,文冬光,张森琦,等. 中国二氧化碳地质储存潜力评价与示范工程[J]. 中国地质调查,2015,2(4):36–46. doi: 10.19388/j.zgdzdc.2015.04.007

    GUO Jianqiang, WEN Dongguang, ZHANG Senqi, et al. Potential evaluation and demonstration project of CO2 geological storage in China[J]. Geological Survey of China, 2015, 2(4): 36–46. doi: 10.19388/j.zgdzdc.2015.04.007

    [13] 李琦,蔡博峰,陈帆,等. 二氧化碳地质封存的环境风险评价方法研究综述[J]. 环境工程,2019,37(2):13–21. doi: 10.13205/j.hjgc.201902003

    LI Qi, CAI Bofeng, CHEN Fan, et al. Review of environmental risk assessment methods for carbon dioxide geological storage[J]. Environmental Engineering, 2019, 37(2): 13–21. doi: 10.13205/j.hjgc.201902003

    [14] 刁玉杰,张森琦,郭建强,等. 深部咸水层二氧化碳地质储存场地选址储盖层评价[J]. 岩土力学,2012,33(8):2422–2428. doi: 10.3969/j.issn.1000-7598.2012.08.028

    DIAO Yujie, ZHANG Senqi, GUO Jianqiang, et al. Reservoir and caprock evaluation of CO2 geological storage site selection in deep saline aquifers[J]. Rock and Soil Mechanics, 2012, 33(8): 2422–2428. doi: 10.3969/j.issn.1000-7598.2012.08.028

    [15] 杨俊哲,王振荣,许峰,等. 二氧化碳封存异地定向持续监测技术研究[J]. 煤炭工程,2020,52(9):37–41.

    YANG Junzhe, WANG Zhenrong, XU Feng, et al. Continuous remote monitoring with directional drilling for CO2 geological storage[J]. Coal Engineering, 2020, 52(9): 37–41.

    [16] 薄其众,戴涛,杨勇,等. 胜利油田樊142块特低渗透油藏CO2驱油储层压力动态变化研究[J]. 石油钻探技术,2016,44(6):93–98.

    BO Qizhong, DAI Tao, YANG Yong, et al. Research on the changes in formation pressure performance of CO2 flooding in the ultra-low permeability oil reservoir: Block Fan 142 of the Shengli Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(6): 93–98.

    [17] 谢关宝,滕春鸣,柳华杰. 盐岩蠕变对水泥环气密封完整性影响规律研究[J]. 石油钻探技术,2022,50(2):78–84. doi: 10.11911/syztjs.2021113

    XIE Guanbao, TENG Chunming, LIU Huajie. Study on the influence of salt rock creep on the integrity of cement sheath gas seals[J]. Petroleum Drilling Techniques, 2022, 50(2): 78–84. doi: 10.11911/syztjs.2021113

    [18] 刘伟,蒲晓林,白小东,等. 油田硫化氢腐蚀机理及防护的研究现状及进展[J]. 石油钻探技术,2008,36(1):83–86. doi: 10.3969/j.issn.1001-0890.2008.01.023

    LIU Wei, PU Xiaolin, BAI Xiaodong, et al. Development of hydrogen sulfide corrosion and prevention[J]. Petroleum Drilling Techniques, 2008, 36(1): 83–86. doi: 10.3969/j.issn.1001-0890.2008.01.023

    [19] 万浩东,杨远光,邓天安,等. 适用于储气库固井自愈合水泥浆体系[J]. 油田化学,2019,36(1):53–57. doi: 10.19346/j.cnki.1000-4092.2019.01.011

    WAN Haodong, YANG Yuanguang, DENG Tianan, et al. A self-healing cement slurry system for gas storage cementing[J]. Oilfield Chemistry, 2019, 36(1): 53–57. doi: 10.19346/j.cnki.1000-4092.2019.01.011

    [20] 刘子玉. CO2对油井水泥石腐蚀规律及控制机制研究[D]. 大庆: 东北石油大学, 2020.

    LIU Ziyu. Study on corrosion law and control mechanism of oil well cement paste by CO2[D]. Daqing: Northeast Petroleum University, 2020.

    [21] 彭鑫岭,蒋光迹,彭松,等. 普光高含H2S气田硫沉积规律及其对开发的影响[J]. 断块油气田,2022,29(4):455–462.

    PENG Xinling, JIANG Guangji, PENG Song, et al. The law of sulfur deposition and its effect on production in Puguang high H2S gas reservoir[J]. Fault-Block Oil & Gas Field, 2022, 29(4): 455–462.

    [22] 汤少兵,李宗要,谢承斌,等. 防CO2腐蚀水泥浆在神华CCS示范项目中的应用[J]. 钻井液与完井液,2011,28(增刊1):17–19.

    TANG Shaobing, LI Zongyao, XIE Chengbin, et al. Application of CO2 corrosion resistance cement slurry in Shenhua CCS demonstration project[J]. Drilling Fluid & Completion Fluid, 2011, 28(supplement1): 17–19.

    [23] 武治强,岳家平,谢仁军,等. 南海超高温耐腐蚀防气窜固井水泥浆体系研究[J]. 石油化工应用,2021,40(9):47–51.

    WU Zhiqiang, YUE Jiaping, XIE Renjun, et al. Study on ultra high temperature anti corrosion cement slurry system in South China Sea[J]. Petrochemical Industry Application, 2021, 40(9): 47–51.

    [24] 吴柏志,张怀兵. 满深1井碳酸盐岩地层自愈合水泥浆固井技术[J]. 石油钻探技术,2021,49(1):67–73. doi: 10.11911/syztjs.2020071

    WU Bozhi, ZHANG Huaibing. Cementing technology of a self-healing cement slurry in the carbonate formations in the Well Manshen 1[J]. Petroleum Drilling Techniques, 2021, 49(1): 67–73. doi: 10.11911/syztjs.2020071

    [25] 席岩,李方园,王松,等. 利用预应力固井方法预防水泥环微环隙研究[J]. 特种油气藏,2021,28(6):144–150.

    XI Yan, LI Fangyuan, WANG Song, et al. Study on prevention of micro-annulus in cement sheath by prestressed cementing method[J]. Special Oil & Gas Reservoirs, 2021, 28(6): 144–150.

    [26]

    KUTCHKO B G, STRAZISAR B R, DZOMBAK D A, et al. Degradation of well cement by CO2 under geologic sequestration conditions[J]. Environmental Science & Technology, 2007, 41(13): 4787–4792.

    [27]

    CAREY J W. Geochemistry of wellbore integrity in CO2 sequestration: Portland cement-steel-brine-CO2 interactions[J]. Reviews in Mineralogy & Geochemistry, 2013, 77(1): 505–539.

    [28] 谢尚贤,颜五和. 大庆油田应用CO2非混相驱油的可行性和技术界限研究[J]. 大庆石油地质与开发,1986,5(4):55–62.

    XIE Shangxian, YAN Wuhe. Study on the feasibility of CO2 immiscible flooding and its technical limitations in Daqing Oil Field[J]. Petroleum Geology & Oilfield Development in Daqing, 1986, 5(4): 55–62.

    [29] 孙建波,靳亚鹏,孙冲,等. H2S-CO2环境下低铬钢的硫化物应力腐蚀开裂行为[J]. 表面技术,2016,45(2):1–7.

    SUN Jianbo, JIN Yapeng, SUN Chong, et al. Sulfide stress corrosion cracking behavior of low-Cr steel in H2S-CO2 environment[J]. Surface Technology, 2016, 45(2): 1–7.

    [30] 张智,宋闯,冯潇霄,等. 井筒屏障完整性及其优化设计:以CO2吞吐井为例[J]. 石油钻采工艺,2019,41(3):318–328.

    ZHANG Zhi, SONG Chuang, FENG Xiaoxiao, et al. Wellbore barrier integrity and design optimization: A case study on CO2 huff and puff well[J]. Oil Drilling & Production Technology, 2019, 41(3): 318–328.

    [31] 吕祥鸿,梁伟,计玲,等. 高温条件下几种耐蚀合金管柱材料的抗腐蚀性能对比分析[J]. 西安石油大学学报(自然科学版),2018,33(5):101–106.

    LYU Xianghong, LIANG Wei, JI Ling, et al. Comparative analysis of corrosion resistance of several corrosion-resistant alloy pipe string materials under high temperature[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2018, 33(5): 101–106.

    [32] 初纬,沈吉云,杨云飞,等. 连续变化内压下套管-水泥环-围岩组合体微环隙计算[J]. 石油勘探与开发,2015,42(3):379–385. doi: 10.1016/S1876-3804(15)30028-8

    CHU Wei, SHEN Jiyun, YANG Yunfei, et al. Calculation of micro-annulus size in casing-cement sheath-formation system under continuous internal casing pressure change[J]. Petroleum Exploration and Development, 2015, 42(3): 379–385. doi: 10.1016/S1876-3804(15)30028-8

    [33]

    TENTHOREY E, VIDAL-GILBERT S, BACKÉ G, et al. Modelling the geomechanics of gas storage: A case study from the Iona gas field, Australia[J]. International Journal of Greenhouse Gas Control, 2013, 13: 138–148. doi: 10.1016/j.ijggc.2012.12.009

    [34]

    SUN Junchang, WANG Jieming, ZHENG Dewen, et al. Regional scale 3D geomechanical modeling for evaluating caprock integrity and fault leakage potential during underground gas storage operations in a produced field[R]. SPE-186053-MS, 2017.

    [35] 戴彩丽,丁行行,于志豪,等. CO2和地层水对储层物性的影响研究进展[J]. 油田化学,2019,36(4):741–747.

    DAI Caili, DING Xingxing, YU Zhihao, et al. Research progress on the influence of CO2 and formation water on reservoir physical properties[J]. Oilfield Chemistry, 2019, 36(4): 741–747.

  • 期刊类型引用(33)

    1. 肖沣峰,杨丽丽,吴家乐,冯尚江,邱士鑫,蒋官澄. 蓖麻油基环保水性聚氨酯成膜剂CWPU. 钻井液与完井液. 2025(02): 201-208 . 百度学术
    2. 宋瀚轩,叶艳,郑连杰,孙振玮,周童,张謦文. 钻井液微纳米封堵性能评价方法研究进展. 应用化工. 2024(02): 383-385 . 百度学术
    3. 李成,李伟,王波,张文哲,李锦锋,王军,常世豪. 微纳米孔缝封堵评价方法研究进展与展望. 科技通报. 2023(01): 18-24+31 . 百度学术
    4. 孙志刚,李骏函,孙明杰,张茂稳,王立锋. 梨树断陷致密承压封堵钻井液技术研究. 广州化工. 2023(04): 186-188 . 百度学术
    5. 李雨洋. 钻井液封堵性能对泥页岩井壁稳定的影响研究. 石化技术. 2023(05): 148-150 . 百度学术
    6. 侯杰,谷玉堂,刘兴君,李浩东,李细鸿. 太阳页岩气田海坝区块安全钻进钻井液技术. 采油工程. 2023(01): 44-49+84 . 百度学术
    7. 尹家峰,王晓军,鲁政权,步文洋,孙磊,景烨琦,孙云超,闻丽. 辽河大民屯凹陷页岩油储层强封堵恒流变油基钻井液技术. 特种油气藏. 2023(04): 163-168 . 百度学术
    8. 付毓伟,罗兵,叶政蔚,肖鹏. 水基钻井液用泥页岩抑制剂研究探讨. 石化技术. 2023(11): 177-179 . 百度学术
    9. 潘永强,张坤,于兴东,王洪月,陈赓,李浩东. 松辽盆地致密油水平井提速技术研究与应用. 石油工业技术监督. 2023(12): 33-38 . 百度学术
    10. 侯杰,尹华洲,刘兴君,杨斯超. 钻采工程钻井液概算编制方法优化设计. 采油工程. 2023(04): 62-64+76 . 百度学术
    11. 司西强,王中华,吴柏志. 中国页岩油气水平井水基钻井液技术现状及发展趋势. 精细石油化工进展. 2022(01): 42-50 . 百度学术
    12. 徐志勇. 高性能水基钻井液技术研究进展. 西部探矿工程. 2022(05): 76-77+79 . 百度学术
    13. 崔磊,董明,石昌森,郭金玉,李艳军,李英武. 高性能仿油基钻井液在L26-PX井的应用. 西部探矿工程. 2022(07): 68-69+73 . 百度学术
    14. 何剑平. 水基钻井液用泥页岩抑制剂研究现状. 西部探矿工程. 2022(08): 83-84+87 . 百度学术
    15. 徐浩,谢鑫,唐玉华,王媛媛,金晶. 疏水型高性能水基钻井液在YC1侧水平井中的应用研究. 精细石油化工进展. 2022(04): 6-10 . 百度学术
    16. 施连海,李春吉. 威HX-4井水平段钻进技术研究与应用. 辽宁化工. 2022(11): 1647-1649+1653 . 百度学术
    17. 殷柏涛. 大庆油田致密油藏钻井液技术发展历程. 西部探矿工程. 2022(10): 103-105+108 . 百度学术
    18. 王伟吉. 基于石墨烯修饰的超低渗透成膜剂制备及性能评价. 石油钻探技术. 2021(01): 59-66 . 本站查看
    19. 盛勇,叶艳,朱金智,宋瀚轩,张震,周广旭,王涛. 内核纳米乳液用于塔西南地区钻井液的优化. 钻井液与完井液. 2021(02): 170-175 . 百度学术
    20. 侯杰,李浩东,于兴东,杨决算. 松辽盆地陆相致密油井壁失稳机理及钻井液对策. 钻井液与完井液. 2021(05): 598-604 . 百度学术
    21. 李发华. 大庆油田中浅层水平井水基钻井液技术研究与应用. 西部探矿工程. 2020(03): 121-124 . 百度学术
    22. 荣鹏飞. 高性能钻井液技术在大庆QP-X5井中的应用. 西部探矿工程. 2020(03): 71-73 . 百度学术
    23. 王晓军,白冬青,孙云超,李晨光,鲁政权,景烨琦,刘畅,蒋立洲. 页岩气井强化封堵全油基钻井液体系——以长宁—威远国家级页岩气示范区威远区块为例. 天然气工业. 2020(06): 107-114 . 百度学术
    24. 左富银,苏俊霖,李立宗,赵洋,曾意晴. 有机纳米封堵剂的研究现状及存在问题分析. 化学世界. 2020(11): 733-737 . 百度学术
    25. 左富银,苏俊霖,黄进军,李立宗,赵洋,秦祖海. 泥页岩微裂缝微观封堵模拟. 化学世界. 2020(12): 822-828 . 百度学术
    26. 高锐. 大庆油田致密油藏开发钻井提速技术浅析. 石油工业技术监督. 2019(01): 54-57 . 百度学术
    27. 曾文韬,许明标,由福昌. 泥页岩纳—微米微孔隙封堵评价方法. 能源与环保. 2019(03): 73-76+160 . 百度学术
    28. 刘卫东,朱晓虎,蒋文海,樊萍,王悦和,都炳锋. 页岩微裂缝模拟实验评价. 钻采工艺. 2019(02): 104-107+7 . 百度学术
    29. 苗立生. 强抑制强封堵水基钻井液在大庆致密油藏的应用. 西部探矿工程. 2019(06): 93-96 . 百度学术
    30. 吴迪. 超低压地层防漏堵漏技术研究与应用. 西部探矿工程. 2019(06): 103-106 . 百度学术
    31. 张仁彪. 大庆中浅层低成本水基钻井液技术研究与应用. 石油石化节能. 2019(07): 11-14+2 . 百度学术
    32. 刘永贵. 大庆致密油藏水平井高性能水基钻井液优化与应用. 石油钻探技术. 2018(05): 35-39 . 本站查看
    33. 杨丽,唐清明,兰林,夏海英,牛静,黄璜. 一种页岩封堵性评价测试方法. 钻井液与完井液. 2018(05): 50-54 . 百度学术

    其他类型引用(7)

图(2)  /  表(1)
计量
  • 文章访问数:  533
  • HTML全文浏览量:  285
  • PDF下载量:  151
  • 被引次数: 40
出版历程
  • 收稿日期:  2022-01-29
  • 修回日期:  2023-02-15
  • 网络出版日期:  2023-03-14
  • 刊出日期:  2023-03-24

目录

    /

    返回文章
    返回