Research on Array Lateral Logging Real-Time Inversions Based on Hybrid Simulated Annealing Algorithms
-
摘要:
测井资料现场实时反演是判断测井质量及进行精细评价的基础。为在保证反演速度的同时,进一步提高反演精度,结合模拟退火算法和马奎特算法,提出了混合模拟退火算法,用以对阵列侧向测井资料进行3参数(地层电阻率、冲洗带半径和冲洗带电阻率)混合反演。研究发现,初始值的选择对混合反演速度具有明显的影响,引入基于电阻率幅度差信息的冲洗带半径初始值选取策略,能够避免反演结果陷入局部最小值,加快反演速度。实例计算结果表明,混合反演算法的反演速度满足实时反演要求,且反演精度相较传统马奎特算法有明显提高;反演结果与试油结果一致,验证了混合反演算法的适用性。混合模拟退火算法为现场阵列侧向测井资料的反演处理提供了新的技术。
Abstract:The real-time inversion of logging data is the basis for judging the field logging quality on-site and the subsequent detailed evaluations. By using the simulated annealing algorithm and Marquette algorithm, the hybrid inversion of three parameters (formation resistivity, radius of flushing zone and flushing zone resistivity) was carried out with the array lateral logging data, so as to further improve the inversion accuracy while ensuring the inversion speed of the conventional real-time inversion methods. The research showed that the selection of initial value had a clear effect on the results of hybrid inversion. A strategy for selecting the initial value of the radius of flushing zone can avoid the inversion result falling into the local minimum based on the resistivity amplitude difference. Further, it can speed up the inversion. The example application results indicated that the inversion speed of hybrid inversion algorithm could meet the real-time inversion requirements. The research also found that the inversion accuracy was higher than that of the traditional Marquette algorithm significantly. Remarkably, the inversion results were consistent with the test results, which verified the applicability of hybrid inversion algorithm. The hybrid simulated annealing algorithm has provided new idea and technical support for the inversion processing of field array lateral logging data.
-
-
表 1 3种算法的性能对比
Table 1 Comparison of the performances with three algorithms
算法 寻优成功率,% 最优适应度 收敛平均代数 混合模拟退火算法 90 0.004 526 45 模拟退火算法 95 0.003 443 104 马奎特算法 56 0.010 742 10 表 2 混合模拟退火算法反演时长与仪器测量时长对比
Table 2 Comparison of the inversion time of hybrid simulated annealing algorithm with the instrument measurement time
井号 处理层段/
m反演时长/
s单点反演时长/
s仪器单点测量
时长/sW1P–3 1 980~2 010 60 0.200 0 0.500 W1P–7 780~820 82 0.205 0 W1P–9 980~1 020 87 0.217 5 -
[1] 谭茂金, 高杰, 邹友龙, 等. 盐水泥浆条件下定向井双侧向测井环境校正方法研究[J]. 地球物理学报, 2012, 55(4): 1422–1432. doi: 10.6038/j.issn.0001-5733.2012.04.038 TAN Maojin, GAO Jie, ZOU Youlong, et al. Environment correction method of dual laterolog in directional well[J]. Chinese Journal of Geophysics, 2012, 55(4): 1422–1432. doi: 10.6038/j.issn.0001-5733.2012.04.038
[2] 杨震, 杨锦舟, 韩来聚. 随钻电磁波电阻率测井实时井眼影响校正[J]. 石油勘探与开发, 2013, 40(5): 625–629. doi: 10.11698/PED.2013.05.19 YANG Zhen, YANG Jinzhou, HAN Laiju. A real-time borehole correction of electromagnetic wave resistivity logging while drilling[J]. Petroleum Exploration and Development, 2013, 40(5): 625–629. doi: 10.11698/PED.2013.05.19
[3] 朱天竹, 杨守文, 白彦, 等. 利用2.5维数值模式匹配算法高效高精度建立垂直井眼中多分量阵列感应井眼校正库[J]. 地球物理学报, 2017, 60(3): 1221–1233. doi: 10.6038/cjg20170332 ZHU Tianzhu, YANG Shouwen, BAI Yan, et al. Efficient and high-precision establishment of borehole correction database for multicomponent array induction logging in vertical boreholes by a 2.5D NMM algorithm[J]. Chinese Journal of Geophysics, 2017, 60(3): 1221–1233. doi: 10.6038/cjg20170332
[4] 邓少贵, 李竹强, 李智强. 水平井双侧向测井响应及层厚/围岩影响快速校正[J]. 石油勘探与开发, 2009, 36(6): 725–729. doi: 10.3321/j.issn:1000-0747.2009.06.007 DENG Shaogui, LI Zhuqiang, LI Zhiqiang. Response of dual laterolog and fast correction for layer thickness and shoulder bed in horizontal wells[J]. Petroleum Exploration and Development, 2009, 36(6): 725–729. doi: 10.3321/j.issn:1000-0747.2009.06.007
[5] 张冲, 毛志强, 孙中春, 等. 玛河气田盐水泥浆侵入条件下双侧向测井电阻率校正方法[J]. 石油地球物理勘探, 2010, 45(5): 757–761. ZHANG Chong, MAO Zhiqiang, SUN Zhongchun, et al. Dual laterolog resistivity correction method under the conditions of salt mud invasion for Mahe Gas Field[J]. Oil Geophysical Prospecting, 2010, 45(5): 757–761.
[6] 范翔宇, 夏宏泉, 陈平, 等. 测井计算钻井泥浆侵入深度的新方法研究[J]. 天然气工业, 2004, 24(5): 68–70. doi: 10.3321/j.issn:1000-0976.2004.05.022 FAN Xiangyu, XIA Hongquan,CHEN Ping, et al. New method of calculating drilling mud invasion depth by logs[J]. Natural Gas Industry, 2004, 24(5): 68–70. doi: 10.3321/j.issn:1000-0976.2004.05.022
[7] FRENKEL M A. Real-time interpretation technology for new multi-laterolog array logging tool[R]. SPE 102772, 2006.
[8] 王才经. 三侧向测井电阻率反演[J]. 石油大学学报(自然科学版), 1989, 13(4): 75–81. WANG Caijing. Formation resistivity reversion for laterolog 3[J]. Journal of the University of Petroleum, China(Natural Science Edition), 1989, 13(4): 75–81.
[9] 倪小威, 冯加明, 徐观佑, 等. 仪器偏心情况下阵列侧向测井井眼校正图版研制[J]. 断块油气田, 2018, 25(4): 469–472. NI Xiaowei, FENG Jiaming, XU Guanyou, et al. Development of borehole correction plates for array lateral logging under instrumental eccentricity condition[J]. Fault-Block Oil & Gas Field, 2018, 25(4): 469–472.
[10] 冯周, 李宁, 武宏亮, 等. 缝洞储集层测井最优化处理[J]. 石油勘探与开发, 2014, 41(2): 176–181. doi: 10.11698/PED.2014.02.06 FENG Zhou, LI Ning, WU Hongliang, et al. Logging optimization processing method for fractured-vuggy reservoirs[J]. Petroleum Exploration and Development, 2014, 41(2): 176–181. doi: 10.11698/PED.2014.02.06
[11] 顿月芹, 袁建生. 阵列侧向电法测井的快速反演[J]. 清华大学学报(自然科学版), 2009, 49(11): 1871–1875. doi: 10.3321/j.issn:1000-0054.2009.11.032 DUN Yueqin, YUAN Jiansheng. Fast inversion of array lateral electric-logging[J]. Journal of Tsinghua University(Science and Technology), 2009, 49(11): 1871–1875. doi: 10.3321/j.issn:1000-0054.2009.11.032
[12] 蔡军, 张恒荣, 曾少军, 等. 随钻电磁波电阻率测井联合反演方法及其应用[J]. 石油学报, 2016, 37(3): 371–381. doi: 10.7623/syxb201603009 CAI Jun, ZHANG Hengrong, ZENG Shaojun, et al. Joint inversion method of electromagnetic wave resistivity logging while drilling and its application[J]. Acta Petrolei Sinica, 2016, 37(3): 371–381. doi: 10.7623/syxb201603009
[13] SMITS J W, DUBOURG I, LULING M G, et al. Improved resistivity interpretation utilizing a new array laterolog tool and associated inversion processing[R]. SPE 49328, 1998.
[14] 冯加明, 刘迪仁, 倪小威, 等. 定向井阵列侧向测井层厚-围岩影响分析及快速校正[J]. 断块油气田, 2018, 25(5): 593–597, 625. FENG Jiaming, LIU Diren, NI Xiaowei, et al. Impact analysis and rapid correction of layer thickness-shoulder bed for response of array lateral logging in directional wells[J]. Fault-Block Oil & Gas Field, 2018, 25(5): 593–597, 625.
[15] 李智强, 范宜仁, 邓少贵, 等. 基于改进差分进化算法的阵列侧向测井反演[J]. 吉林大学学报(地球科学版), 2010, 40(5): 1199–1204. LI Zhiqiang, FAN Yiren, DENG Shaogui, et al. Inversion of array laterolog by improved difference evolution[J]. Journal of Jilin University(Earth Science Edition), 2010, 40(5): 1199–1204.
[16] 潘克家, 汤井田, 杜华坤, 等. 轴对称地层中高分辨率阵列侧向测井信赖域反演法[J]. 地球物理学报, 2016, 59(8): 3110–3120. doi: 10.6038/cjg20160833 PAN Kejia, TANG Jingtian, DU Huakun, et al. Trust region inversion algorithm of high-resolution array lateral logging in axisymmetric formation[J]. Chinese Journal of Geophysics, 2016, 59(8): 3110–3120. doi: 10.6038/cjg20160833
[17] 王才志, 石广仁, 张丽君. 基于极快速模拟退火算法的地层横波各向异性反演[J]. 石油学报, 2007, 28(1): 67–72. doi: 10.3321/j.issn:0253-2697.2007.01.013 WANG Caizhi, SHI Guangren, ZHANG Lijun. Computing method of shear wave anisotropy of formation based on very fast simulated reannealing[J]. Acta Petrolei Sinica, 2007, 28(1): 67–72. doi: 10.3321/j.issn:0253-2697.2007.01.013
[18] 刘财, 符伟, 郭智奇, 等. 基于贝叶斯框架的各向异性页岩储层岩石物理反演技术[J]. 地球物理学报, 2018, 61(6): 2589–2600. doi: 10.6038/cjg2018L0176 LIU Cai, FU Wei, GUO Zhiqi, et al. Rock physics inversion for anisotropic shale reservoirs based on Bayesian scheme[J]. Chinese Journal of Geophysics, 2018, 61(6): 2589–2600. doi: 10.6038/cjg2018L0176
[19] 吴大奎, 李亚林, 伍志明, 等. 地震、测井资料联合反演的神经网络算法研究[J]. 天然气工业, 2004, 24(3): 55–57. doi: 10.3321/j.issn:1000-0976.2004.03.016 WU Dakui, LI Yalin, WU Zhiming, et al. Research on the neural network algorithm of joint inversion of seismic and log data[J]. Natural Gas Industry, 2004, 24(3): 55–57. doi: 10.3321/j.issn:1000-0976.2004.03.016
[20] 刘丽丽, 邢光龙. 基于支持向量机的电磁波传播测井反演参数约束条件提取方法[J]. 测井技术, 2008, 32(3): 215–219. doi: 10.3969/j.issn.1004-1338.2008.03.005 LIU Lili, XING Guanglong. Constraint extraction of inversion parameters based on support machine vector for electromagnetic propagation logging[J]. Well Logging Technology, 2008, 32(3): 215–219. doi: 10.3969/j.issn.1004-1338.2008.03.005
[21] 汪宏年, 陶宏根, 其木苏荣, 等. 水平层状介质中双侧向资料的全参数正则化迭代反演与应用[J]. 地球物理学报, 2002, 45(增刊1): 387–399. WANG Hongnian, TAO Honggen, CHIMED Surong, et al. Regularized entire-parameter iterative inversion of dual-laterolog in horizontally stratified media and its application[J]. Chinese Journal of Geophysics, 2002, 45(supplement 1):387–399.
[22] 倪小威, 徐观佑, 敖旋峰, 等. 阵列侧向测井曲线极化角影响因素研究[J]. 石油钻探技术, 2018, 46(2): 120–126. NI Xiaowei, XU Guanyou, AO Xuanfeng, et al. The influencing factors on the polarizing angle of array laterolog curves[J]. Petroleum Drilling Techniques, 2018, 46(2): 120–126.
[23] 倪小威, 徐思慧, 别康, 等. 不同井眼偏心距下水平井阵列侧向测井围岩校正研究[J]. 石油钻探技术, 2018, 46(4): 121–126. NI Xiaowei, XU Sihui, BIE Kang, et al. Surrounding rock influence correction for array laterolog responses with borehole eccentricities in horizontal wells[J]. Petroleum Drilling Techniques, 2018, 46(4): 121–126.
[24] 余昭平, 燕善俊, 张文政, 等. 基于模拟退火算法的DES最佳线性逼近[J]. 计算机工程, 2006, 32(16): 158–159. doi: 10.3969/j.issn.1000-3428.2006.16.060 YU Zhaoping, YAN Shanjun, ZHANG Wenzheng, et al. Best linear approximations of DES based on simulate annealing algorithms[J]. Computer Engineering, 2006, 32(16): 158–159. doi: 10.3969/j.issn.1000-3428.2006.16.060
[25] 王杜娟, 刘锋, 王延章. 恶化效应下加工时间可控的新工件到达干扰管理[J]. 系统管理学报, 2016, 25(5): 895–906, 913. WANG Dujuan, LIU Feng, WANG Yanzhang. Disruption management for new jobs arrivals with deteriorating effect and controllable processing times[J]. Journal of Systems & Management, 2016, 25(5): 895–906, 913.
[26] 王璞, 吴国忱, 李伟. 基于改进模拟退火算法的横波速度求取[J]. 断块油气田, 2015, 22(3): 330–333. WANG Pu, WU Guochen, LI Wei. Shear-wave velocity prediction based on revised and simulated annealing algorithm[J]. Fault-Block Oil & Gas Field, 2015, 22(3): 330–333.
[27] 顾元宪, 项宝卫, 赵国忠. 一种改进的连续变量全局优化模拟退火算法[J]. 系统工程理论与实践, 2005, 25(4): 103–109. doi: 10.3321/j.issn:1000-6788.2005.04.016 GU Yuanxian, XIANG Baowei, ZHAO Guozhong. An improved simulated annealing algorithm for global optimization problems with continuous variables[J]. Systems Engineering—Theory & Practice, 2005, 25(4): 103–109. doi: 10.3321/j.issn:1000-6788.2005.04.016
[28] 冯思臣, 王绪本, 阮帅. 一维大地电磁测深几种反演算法的比较研究[J]. 石油地球物理勘探, 2004, 39(5): 594–599. doi: 10.3321/j.issn:1000-7210.2004.05.019 FENG Sichen, WANG Xuben, RUAN Shuai. Comparison among several inversion algorithms of 1D MT[J]. Oil Geophysical Prospecting, 2004, 39(5): 594–599. doi: 10.3321/j.issn:1000-7210.2004.05.019
[29] 汪勇, 金菲, 张瑞军. 引导函数支配的进化模糊聚类算法[J]. 系统工程理论与实践, 2011, 31(2): 302–307. doi: 10.12011/1000-6788(2011)2-302 WANG Yong, JIN Fei, ZHANG Ruijun. Evolutionary fuzzy clustering algorithm dominated by guided function[J]. Systems Engineering—Theory & Practice, 2011, 31(2): 302–307. doi: 10.12011/1000-6788(2011)2-302
-
期刊类型引用(6)
1. 黄梁帅. 超深强底水断溶体油藏精细注水技术优化. 粘接. 2024(08): 126-129 . 百度学术
2. 陈方方,彭得兵,王娜,王张恒,曾其信. 英买2缝洞型油藏注水及注气提高采收率研究. 西南石油大学学报(自然科学版). 2024(04): 149-158 . 百度学术
3. 佘治成,陈利新,徐三峰,肖云,张键. 缝洞型碳酸盐岩油藏注氮气提高采收率技术. 西南石油大学学报(自然科学版). 2024(04): 138-148 . 百度学术
4. 刘盈,黄雪莉,张宵宁,代真真,李婷婷. 耐温抗盐堵剂研究及其结构性能表征. 应用化工. 2023(12): 3392-3396 . 百度学术
5. 葛丽珍,王公昌,张瑞,张烈,张俊廷. 渤海S油田高含水期强水淹层避射原则研究. 石油钻探技术. 2022(03): 106-111 . 本站查看
6. 郑松青,康志江,程晓军,李小波,张世亮,崔书岳,蒋林. 塔河油田缝洞型碳酸盐岩油藏水驱开发特征及改善对策. 油气地质与采收率. 2022(06): 95-104 . 百度学术
其他类型引用(3)