逆流自吸效应对页岩油储层坍塌压力的影响研究

邓富元, 何世明, 赵转玲, 汤明, 李恒

邓富元, 何世明, 赵转玲, 汤明, 李恒. 逆流自吸效应对页岩油储层坍塌压力的影响研究[J]. 石油钻探技术, 2019, 47(1): 37-44. DOI: 10.11911/syztjs.2018138
引用本文: 邓富元, 何世明, 赵转玲, 汤明, 李恒. 逆流自吸效应对页岩油储层坍塌压力的影响研究[J]. 石油钻探技术, 2019, 47(1): 37-44. DOI: 10.11911/syztjs.2018138
DENG Fuyuan, HE Shiming, ZHAO Zhuanling, TANG Ming, LIU Sen. The Influence of Countercurrent Spontaneous Imbibition on the Collapse Pressure of Shale Oil Reservoirs[J]. Petroleum Drilling Techniques, 2019, 47(1): 37-44. DOI: 10.11911/syztjs.2018138
Citation: DENG Fuyuan, HE Shiming, ZHAO Zhuanling, TANG Ming, LIU Sen. The Influence of Countercurrent Spontaneous Imbibition on the Collapse Pressure of Shale Oil Reservoirs[J]. Petroleum Drilling Techniques, 2019, 47(1): 37-44. DOI: 10.11911/syztjs.2018138

逆流自吸效应对页岩油储层坍塌压力的影响研究

基金项目: 

国家自然科学基金面上项目“基于流-固-化耦合理论的欠平衡钻水平井井壁失稳机理研究” 51474186

“基于多场耦合理论的页岩气水平井井壁失稳机理研究” 51574202

“高温高压高含酸性气体的海相裂缝性地层溢流机理研究” 51774247

四川省科技项目“高温高压裂缝性地层重力置换溢流机理与工业化应用研究 2018JY0460

详细信息
    作者简介:

    邓富元(1993—),男,四川广安人,2016年毕业于西南石油大学石油工程专业,油气井工程专业在读硕士研究生,研究方向为井眼稳定、欠平衡钻井。E-mail:1829816418@qq.com

    通讯作者:

    何世明,hesming@sina.com

  • 中图分类号: TE28+3

The Influence of Countercurrent Spontaneous Imbibition on the Collapse Pressure of Shale Oil Reservoirs

  • 摘要:

    页岩油储层在采用水基钻井液欠平衡钻进时,由于毛细管力作用,钻井液滤液仍会进入地层,降低地层稳定性。为此,进行了逆流自吸效应对页岩油储层坍塌压力的影响规律研究。基于两相渗流理论,建立了逆流自吸作用下的水侵模型,分析发现页岩油储层井眼附近的含水饱和度随欠压差值增大而降低;在考虑水化作用对地层岩石强度的影响的基础上,建立了井周应力模型,对页岩油储层的坍塌压力当量密度变化规律进行了分析。研究发现:逆流自吸作用下,钻井时间越长,欠压差值越小,页岩油储层坍塌压力越大,越不利于井眼稳定;当只改变欠压差值时,页岩油储层最大井径扩大率存在最小值。研究认为,建立的井周应力模型可为页岩油储层欠平衡钻井设置合理欠压差值以及调整钻井液密度提供理论依据。

    Abstract:

    During under-balanced drilling in a shale reservoir, water based drilling fluid can enter the formation due to capillary force when the under-pressure difference is small.Thus, it causes pore pressure change around the wellbore and reduces the stability of the borehole.Becuase of the potential for blowouts, there is a significant need to to carry out the research on the influence law of countercurrent spontaneous imbibition on wellbore collapse pressure in under-balanced drilling.In this paper we discuss how we established a water invasion model of shale reservoir considering the countercurrent spontaneous imbibition in under-balanced drilling which we based on two-phase seepage theory.Our work demonstrates that water saturation near the wellbore will decrease as the under-pressure difference increases.Considering rock strength changes with hydration we set up a stress analysis model near wellbore and studied the equivalent mud density of wellbore collapse pressure of shale.It can be determined from the model that longer drilling times will generate smaller under-pressure differences, and a alarger variation range of water saturation near the borehole will cause lower collapse pressure considering the influence of countercurrent spontaneous imbibition, which is more unfavorable for borehole stability.When other parameters remain constant except for under-pressure difference, a minimum borehole diameter enlargement rate is achieved in the shale.This borehole stability model can provide a theoretical basis for setting a reasonable under-pressure difference and adjusting the drilling fluid density in under-balanced drilling of horizontal shale gas well.

  • 页岩油储集层岩石矿物成分复杂,具有低孔隙度、低渗透率等特点,目前页岩油开发主要采用“水平井+密切割体积压裂”技术[1]。但是,页岩油水平井受多种因素影响,时有套管变形发生[2-4],如随着吉木萨尔凹陷页岩油逐步扩大开发与规模建产,套变井的数量和比例逐年递增,2019 年套变井比例已经超过 50%[5];沧东凹陷新钻页岩油水平井均采用大规模体积压裂方式开发[6-7],开发初期也有套变问题发生,变形严重时造成压裂施工丢段,无法发挥整井产能,造成资源浪费。

    目前,套管整形工艺主要有机械整形和液压整形2类。机械整形是利用顿击式胀管器的冲击力或偏心辊子胀管器转动产生的挤压力修复变形套管[8],存在易损伤套管及易发生钻杆折断、工具胀裂或辊子中心轴断裂落井等问题,故目前已经很少使用;液压滚珠整形技术是将增压后的液压力转换成轴向机械推力,推动滚珠扩径胀头挤压套管内壁实现整形[9-10],但常规液压整形技术存在大量滚珠落井、有效期短等问题,在直井上使用较多,不适合于页岩油水平井。因此,有必要研究页岩油水平井套管液压整形技术。大港油田研究团队针对页岩油水平井套管整形开展了技术调研,改进并研发了系列整形工具,结合室内试验结果完善了施工工艺,并在沧东凹陷页岩油水平井GD1701H井现场试验取得了成功,为下一步连续管扫塞、恢复全井段产能提供了通道。

    页岩油藏具有低孔低渗特征,直井开发无法获得稳定的工业产量,只有通过水平井精准钻遇“甜点”并进行压裂改造才能获得产能突破[11]。如果套变点在A靶点附近,体积压裂时无法实施分段下桥塞封堵,发生套管变形后不能改造的井段一般就放弃了施工,投产时井筒不能满足连续管扫塞,造成页岩油井产量低、开发时间短,井控资源量得不到有效利用。

    为了降低体积压裂造成的套管变形概率,除了优化压裂工艺外,还采用提高套管钢级、增加壁厚来增强套管抗变形能力[12],如采用TP125V级特种钢材,壁厚从9.17,10.54 mm提高至12.70 mm,沧东凹陷页岩油水平井的套变数量得到了有效控制。但是,页岩油水平井压裂套损机理复杂、影响因素多,套损种类也较多,如丝扣渗漏、套管本体穿孔和套变缩径等,尤以套变缩径占比最大,前2种套损井采用补贴管或膨胀管工艺可以恢复生产,套变缩径处理难度大,行业内尚未有成熟的案例可供借鉴。

    常规液压胀套工艺的工具串组合(自下而上)为:滚珠胀管器+动力杆+多级液压加力器(增力液缸)+水力锚组+油管。套管整形时,地面泵车打压,管柱内高压流体使多级增力液缸产生向下的推力,推动胀管器,使胀管器锥体外围的滚珠滚压扩张管壁,对套管缩径井段进行修复[13-14]。常规液压整形技术在页岩油套变井应用存在以下不足:

    1)滚珠碎裂变形落井。滚珠胀管器胀头锥形面上排列一定数量的钢质滚珠,胀套时滚珠在锥面槽内自下而上滚压套管,为了提升胀套修复能力,滚珠设计硬度都比较高,受挤压时易碎裂落井;同时,滚珠槽受到滚珠挤压变形,造成滚珠挤出落井。滚珠大量碎裂、脱落现象在常规直井施工中比较普遍,如果脱落滚珠及碎片堆积在页岩油水平井下部封堵桥塞上,将会导致投产时连续管磨铣底部桥塞受阻。

    2)工具串受力不均蹩断。页岩油水平井套管变形段一般在A靶点或断层附近,井斜角大,井眼轨迹复杂,套管变形不规则。胀套工具串总长度达到10~15 m,工具之间为丝扣刚性连接,在液缸下推力作用下,胀管器胀头无法准确找正井眼,工具串轴向和径向受力不均匀,存在蹩断落井的风险。

    3)套管回弹有效期短。目前页岩油水平井所用套管壁厚均大于常规套管,TP125V钢级或更高钢级的钢材强度大、弹性应变能力强,胀管器挤压力卸载后回弹量大于常规材料[15]。锥形胀头最大外径段通过变形点后,变形套管回弹卡住胀管器;更为严重的是,套管经过常规液压整形修复后,短期内回弹恢复原先变形状态,造成生产管柱卡钻,现场已经发生多起类似案例。

    页岩油井普遍采用水平井钻井完井方式,井壁摩阻大,常规修井机额定提升负荷小,解卡能力弱,整形工具串卡钻风险高;且页岩油井开发投资巨大,修复有效期直接关系着页岩油井的全生命周期和投资回报,所以有效的套变修复方法在页岩油开发过程中显得非常重要和迫切。

    针对页岩油水平井特殊的井身结构和条件,克服常规液压整形技术的不足,改进并研发了系列整形工具。

    扩张式胀管器如图1所示,胀头由芯轴和扩张牙片组成,芯轴外部和分瓣式扩张牙片内侧设计成6°~8°锥度斜坡。套管整形时,多级液压加力器的动力杆推动扩张头芯轴下行,推动扩张牙片径向挤胀缩径套管进行修复,将常规滚珠胀头的滚珠点接触转变成分瓣式牙片面接触,扩张牙片强度大、受力均匀,多级液缸可以施加更大的下推力,有助于缩径套管恢复。胀头通过变形点后,复位弹簧带动扩张牙片回缩,开始下一个胀套行程。

    图  1  扩张式胀管器
    Figure  1.  Expandable casing swage

    保径短节如图2所示,连接在扩张式胀管器后部,外径和胀管器胀头最大直径保持一致。胀管器通过变形点后,带动保径短节继续下行,短节上的钢珠对扩张过的套管进行滚压,增大套管的塑性形变,消除套管的回弹应力,滚压作用还能提升变形段套管表面硬度,防止修复后套管短期内回弹,延长修复有效期。变形套管的修复主要靠扩张头的挤压作用,降低了对滚珠强度的要求,同时滚珠在原位转动滚压,避免了因滚珠槽受力变形造成滚珠落井。

    图  2  保径短节
    Figure  2.  Diameter-keeping sub

    柔性短节如图3所示,由柔性钻杆单根丝扣连接而成,单根长度0.15 m,活动关节角度0°~4.5°可调,额定扭矩25 kN·m,抗拉强度1 200 kN。套管整形时,每个活动关节在液压加力器缓慢下压力的作用下角度发生变换,引导扩张式胀管器找正井眼,柔性短节提高了工具串的挠度,避免工具串受压时由于刚性高导致蹩断。

    图  3  柔性短节
    Figure  3.  Flexible sub

    为了降低工具串和管串与套管之间的摩擦阻力,从而有助于扶正工具串,提升管串的脱困能力,设计了减阻接箍(见图4)和减阻短节(见图5),分别安装在工具串中和大斜度井段处的管串中。

    图  4  减阻接箍
    Figure  4.  Friction drag-reducing collar
    图  5  减阻短节
    Figure  5.  Friction drag-reducing sub

    基于变形套管的塑性回弹和井下大直径工具较多等原因,液压胀套施工过程中不可避免地会发生卡工具现象。因此,为了顺利进行液压胀套,除了加装减阻工具降低井壁的摩擦阻力外,还在工具串顶部加装震击器和加速器,在井口四通上安装液压辅助解卡装置。其中,应用辅助解卡装置的目的是提高管柱在整形过程中的安全性,降低对修井机提升负荷的依赖。

    综上所述,页岩油水平井液压整形井下工具串组合自下而上为:扩张式胀管器+保径短节+(螺旋刮削器)+柔性短节+动力杆+多级液压加力器(增力液缸)+水力锚组+泄压阀+水力锚组+震击器+加速器+18°斜坡钻杆。

    从理论上讲,采用上述工具组合后,胀头的抗外挤能力得到加强,工具串挠度大,胀头可以自动找正防止劈裂,消除变形套管塑性回弹,辅助工具可以提升管串的解卡能力,提升液压胀套技术的工艺适应性,延长整形修复的有效期。页岩油水平井液压整形技术与常规技术的对比情况如表1所示。

    表  1  页岩油水平井液压整形技术与常规技术对比
    Table  1.  Comparison of hydraulic shaping technology and conventional technology in horizontal shale oil wells
    技术工艺可靠性卡钻风险修复效果
    常规液压整形技术滚珠及碎裂残片落井;工具串刚性大,易蹩断风险高变形套管短期内回弹
    页岩油水平井液压整形技术扩张牙片强度高、受力均匀;工具串挠度大,胀头自动找正风险低塑性大硬度高,有效期长
    下载: 导出CSV 
    | 显示表格

    现场试验前,开展了室内模拟试验,以验证页岩油水平井套管液压整形工具的可靠性、工艺的可行性,并根据发现的问题进行改进和完善。

    试验平台,ϕ139.7 mm ×12.7 mm TP125V级套管,压力机,系列套管液压整形工具。

    1)将套管固定在试验台上,用压力机加压,折算外挤力为870 kN,套管内径从118.6 mm变形至47.0 mm,模拟井下变形套管。

    2)将套管固定在试验台上,试验台推送机顶杆连接扩张式胀管器,模拟井下套管修复过程。

    a.第一次加压。投放ϕ98.0 mm扩张式胀管器,液压站压力为15 MPa,胀头折算外挤力600 kN,变形段套管有少量恢复,从套管底部发现胀管器不居中(见图6(a)),胀头牙片劈裂(见图6(b))。分析认为,选择的胀头偏大,套管内圆周变形不一致,扩张头没有找正,导致分瓣式牙片受力不均劈裂损坏,无法完成理想修复。根据以上情况,决定减小扩张器尺寸,增加柔性短节协助找正。

    图  6  扩张式胀头变形损坏
    Figure  6.  Expansion shaping head damaged

    b.第二次加压。投放ϕ54.0 mm扩张式胀管器+柔性短节,液压站压力为25 MPa,折算外挤力1 000 kN,变形段套管部分恢复。

    c.第三次加压。分别投放ϕ98.0,ϕ100.0和ϕ102.0 mm扩张式胀管器(见图7(a)),分段加压至15,25和28 MPa,变形段套管恢复明显,胀管器顺利通过(见图7(b)),由于室内整形安全风险高,ϕ102.0 mm整形头通过后未做进一步试验。

    图  7  套管恢复情况
    Figure  7.  Casing restoration

    室内试验结果表明,页岩油水平井变形套管液压整形技术可行,液压产生的下推力使整形胀管器不断扩径,将套管内壁胀压恢复圆形状态,从而达到修复变形套管的目的。试验结果也表明,施工时需要考虑胀头找正,胀头由小到大分步实施。

    页岩油水平井变形套管液压整形技术先在庄 6-12-10井和西 36-4井等2口直井进行了现场试验,套管钢级分别为N80和J55。其中,西36-4井油层套管为大直径(ϕ177.8 mm)套管,井下工具串长度11.44 m,采用ϕ73.0 mm油管和400 kN修井机施工,扩张式胀管器级差初定4.0 mm。胀套施工过程中,地面泵压高、施工效率低并发生了卡钻现象,由于修井机提升负荷不足,采用井口液压辅助解卡装置顺利解卡;后期将胀管器级差降为2.0 mm,降低了施工泵压,施工效率得到了提升,最终一级胀管器顺利通过变形段,不阻不卡,2口井套管修复均取得了成功。此后,该技术在页岩油水平井GD1701H井进行了现场试验。

    GD1701H井是沧东凹陷页岩油先导试验水平井,完钻井深5 465 m,最大井斜90.12°,采用壁厚10.54 mm、钢级TP125V的ϕ139.7 mm油层套管完井。该井压裂后四十臂测井显示套管局部内凹(见图8(a)),井深4 081~4 083和4 084~4 087 m处套管变形(见图8(b)),具体变形参数见表2

    图  8  GD1701H井套管变形电测结果示意
    Figure  8.  Casing deformation logging results of Well GD1701H
    表  2  GD1701H井测40臂解释结果
    Table  2.  40-arm logging interpretation results of Well GD1701H
    序号起始深度/m终止深度/m长度/m正常半径/mm最小半径/mm最大半径/mm测井解释
    14 0814 083259.3139.0965.98变形
    24 0844 087359.3143.7163.60变形
    下载: 导出CSV 
    | 显示表格

    ϕ94.75 mm×1.20 m通径规通过连续油管带时有明显遇阻显示。地质开发方案要求修复套管内径,满足ϕ108.0 mm磨鞋通过变形井段磨铣压裂段桥塞,恢复下部井段产能。针对该井深度大,钻具自身负荷高,TP125V套管钢级硬度大、回弹形变大等不利因素,设计采用1 200 kN修井机(带转盘)和S135钢级18°斜坡钻杆,施工遵循 “降低级差、胀滚结合、柔性找正、震击防卡”的修复思路,工具串胀头包含柔性短节及相应的减阻接箍和减阻短节,初期工具串长度达到15.70 m,为了降低对套管的刻蚀损伤,设计了6组水力锚。

    GD1701H井套变井段井斜角80°,狗腿度4.69°/30m。井斜角大、井眼复杂导致井下管柱与套管摩阻大,如果单次胀套尺寸过大,变形套管易回弹造成工具串卡钻,解卡难度大。因此,设计胀管器级差从常规施工的4.0 mm降至2.0 mm,逐级采用ϕ110.0,ϕ112.0,ϕ114.0和ϕ115.6 mm 系列扩张式胀管器逐步修复,避免了卡钻的发生。

    采用多级液缸串联,增大动力杆的下推力和胀管器分瓣牙片的外推力,为确保管柱具有足够的锚定力,必须配备多组水力锚[16],开始2趟胀套工具串在泄压阀上下各安装3组(共计6组)水力锚。胀套施工过程中,水力锚锚牙在多次打压后没有完全回缩,锚牙在套管上刻蚀出毛刺,导致工具串无法下行,水力锚锚牙被不正常磨损(见图9(a)),本体也被套管毛刺刻蚀出深槽(见图9(b)),第3趟胀套失败。在充分计算水力锚锚定力和套管强度后,泄压阀下水力锚设定为2组,泄压阀上部水力锚设定为1组,降低了锚牙回缩的不一致性,刮削完套管毛刺后,胀管器带着工具串顺利下行。

    图  9  水力锚磨损情况
    Figure  9.  Hydraulic anchor wear

    ϕ115.6 mm胀套工具串顺利通过后,为保证胀套修复效果,将多级ϕ114.0 mm保径短节连接,长度超过1.20 m,工具串保径短节后接螺旋槽刮削器铲除毛刺,在套管变形井段反复胀套、滚压和刮削,以消除套管回弹应力,不仅保证了套变修复效果,也起到了模拟通井效果。

    GD1701H井胀套工具串上配置井下震击器和加速器,在井口四通上安装辅助液压解卡器,解卡器举升负荷1 200 kN,下压负荷800 kN,即使管串卡钻也能顺利脱困。

    通过胀套工具的合理配置和精心施工,经过7趟修复,GD1701H井套管通径从94.75 mm恢复至115.60 mm,恢复率97.45 %,并消除了变形套管的回弹应力。ϕ112.0 mm ×1.20 m通井规顺利通过变形井段至井底桥塞,下ϕ50.8 mm连续油管带+ϕ79.0 mm×4.90 m螺杆钻具+ϕ108.0 mm磨鞋顺利扫塞至井底,半年后停喷带压下泵投产,产液量由修复前的9.6 m3/d增加至23.2 m3/d,后期2次检泵维护施工均未发现套变现象,套管修复施工效果较好,满足了地质开发需求。

    1)针对页岩油水平井压裂后变形套管的液压整形技术需求,基于提高整形工具的可靠性,消除变形套管的塑性回弹应力,避免施工时损伤套管和卡钻等风险的研究思路,改进并研发了系列井下工具,完善了现场施工工艺,形成了胀头自动找正、套管滚压加固和辅助解卡等技术系列。

    2)室内试验表明,页岩油井高钢级套管需要的整形力大,对工具要求高,相对而言更适合使用扩张式胀管器,施工时要保证胀头能自动找正。

    3)现场试验表明,页岩油水平井变形套管液压整形技术能够恢复套管内径,避免压裂丢段,满足投产时连续管扫塞恢复底层井段能量的需要,该技术对页岩气开发中类似套变的治理也有借鉴意义。

    4)页岩油水平井变形套管液压整形技术要遵循“降低级差、胀滚结合、柔性找正、震击防卡”的技术思路选配井下工具,并根据井下显示和起出工具的磨损程度及时做出调整。

    5)建议进一步建立理论模型,准确计算不同钢级变形套管需要的外推力,优化工具数量,缩短工具串长度,进一步提高页岩油水平井变形套管液压整形技术的工艺适应性。

  • 图  1   毛管力作用下井眼附近含水饱和度随时间和无因次径向距离的变化规律

    Figure  1.   Variation law of water saturation near borehole with time and dimensionless radial distance under capillary force

    图  2   不同欠压差值下钻井10 d后井眼附近含水饱和度随无因次径向距离的变化规律

    Figure  2.   Variation law of water saturation near borehole with dimensionless radial distance after 10 days of drilling under different under-pressure

    图  3   欠压差为0.5 MPa时页岩吸水后井眼附近岩石力学特性随无因次径向距离的变化规律

    Figure  3.   Variation law of rock mechanical properties near borehole with dimensionless radial distance after shale water absorption under-pressure difference 0.5 MPa

    图  4   页岩油储层井眼稳定模型求解流程

    Figure  4.   Solution flow of borehole stability model

    图  5   井眼周围地层坍塌压力随无因次径向距离和井周角的变化规律

    Figure  5.   Variation law of formation collapse pressure equivalent drilling fluid density around borehole with dimensionless well radius and well round angle

    图  6   钻井10 d后不同欠压差下井眼附近地层坍塌压力随无因次径向距离的变化规律

    Figure  6.   Variation law of formation collapse density with radial distance near borehole under different under-pressure difference after 10 days of drilling

    图  7   不同欠压差下的最大井径扩大率

    Figure  7.   The maximum hole diameter enlargement rate under different under-pressure difference

    图  8   欠压差2 MPa条件下钻井10 d后渗透率对井眼附近地层坍塌压力的影响

    Figure  8.   Influence of permeability on formation collapse density near borehole after 10 days of drilling at under-pressure difference of 2 MPa

    图  9   欠压差2 MPa条件下钻井10 d后渗透率对最大井径扩大率的影响

    Figure  9.   Influence of permeability on maximum hole diameter enlargement rate after 10 days of drilling at under-pressure difference of 2 MPa

    图  10   欠压差为2 MPa下钻井10 d后孔隙度对坍塌压力的影响

    Figure  10.   Influence of porosity on collapse pressure after 10 days of drilling at under-pressure difference of 2 MPa

    图  11   不同孔隙度下的最大井径扩大率

    Figure  11.   The maximum hole diameter enlargement rate at different porosity

    图  12   欠压差2 MPa条件下钻井10 d后界面张力对坍塌压力的影响

    Figure  12.   Influence of surface tension on collapse pressure after 10 days of drilling at under-pressure difference of 2 MPa

    图  13   不同界面张力下的最大井径扩大率

    Figure  13.   The maximum hole diameter enlargement rate under different surface tension

  • [1] 陈勉, 金衍, 张广清.石油工程岩石力学[M].北京:科学出版社, 2008:60-65.

    CHEN Mian, JIN Yan, ZHANG Guangqing.Petroleum rock mechanics[M].Beijing:Science Press, 2008:60-65.

    [2] 黄亮.欠平衡钻井随钻不稳定渗流模型研究[D].成都: 西南石油大学, 2013.

    HUANG Liang.Under-balanced drilling with the drill ustable seepage model research[D].Chengdu: Southwest Petroleum University, 2013.

    [3]

    YEW C H, CHENEVERT M E, WANG C L, et al.Wellbore stress distribution produced by moisture adsorption[J].SPE Drilling Engineering, 1990, 5(4):311-316. doi: 10.2118/19536-PA

    [4] 王剑.泥页岩的水化稳定性研究[D].西安: 西安石油大学, 2012.

    WANG Jian.Clay shale hydration stability studies[D].Xi'an: Xi'an Shiyou University, 2012.

    [5] 程远方, 张锋, 王京印, 等.泥页岩井壁坍塌周期分析[J].中国石油大学学报(自然科学版), 2007, 31(1):63-66, 71. doi: 10.3321/j.issn:1000-5870.2007.01.012

    CHENG Yuanfang, ZHANG Feng, WANG Jingyin, et al.Analysis of borehole collapse cycling time for shale[J].Journal of China University of Petroleum(Edition of Natural Science), 2007, 31(1):63-66, 71. doi: 10.3321/j.issn:1000-5870.2007.01.012

    [6] 刘厚彬.泥页岩井壁稳定性研究[D].成都: 西南石油大学, 2006.

    LIU Houbin.Study on borehole stability of shale[D].Chengdu: Southwest Petroleum University, 2006.

    [7]

    YU Mengjiao, CHENEVERT M E, SHARMA M M.Chemical-mechanical wellbore instability model for shales:accounting for solute diffusion[J].Journal of Petroleum Science & Engineering, 2003, 38(3):131-143. http://www.sciencedirect.com/science/article/pii/S0920410503000275

    [8]

    BALLARD T J, BEARE S P, LAWLESS T A.Fundamentals of shale stabilization:water transport through shales[J].SPE Formation Evaluation, 1994, 9(2):129-134. doi: 10.2118/24974-PA

    [9] 沈建文, 屈展, 陈军斌, 等.溶质离子扩散条件下泥页岩力学与化学井眼稳定模型研究[J].石油钻探技术, 2006, 34(2):35-37. doi: 10.3969/j.issn.1001-0890.2006.02.010

    SHEN Jianwen, QU Zhan, CHEN Junbin.A mechanical-chemical model for shale wellbore stability under solute diffusion[J].Petroleum Drilling Techniques, 2006, 34(2):35-37. doi: 10.3969/j.issn.1001-0890.2006.02.010

    [10] 马天寿, 陈平, 王旭东, 等.页岩气储层井周孔隙压力传递数值分析方法[J].石油学报, 2016, 37(5):660-671. http://d.old.wanfangdata.com.cn/Periodical/syxb201605010

    MA Tianshou, CHEN Ping, WANG Xudong, et al.Numerical analysis method of pore pressure propagation around the borehole for shale gas reservoirs[J].Acta Petrolei Sinica, 2016, 37(5):660-671. http://d.old.wanfangdata.com.cn/Periodical/syxb201605010

    [11] 周庆凡, 杨国丰.致密油与页岩油的概念与应用[J].石油与天然气地质, 2012, 33(4):541-544. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201204007

    ZHOU Qingfan, YANG Guofeng.Definition and application of tight oil and shale oil terms[J].Oil & Gas Geology, 2012, 33(4):541-544. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201204007

    [12] 童姜楠.我国页岩油发展现状与展望[J].地下水, 2015, 37(2):207-208. doi: 10.3969/j.issn.1004-1184.2015.02.085

    TONG Jiangnan. Development status and prospect of shale oil in China[J].Ground Water, 2015, 37(2):207-208. doi: 10.3969/j.issn.1004-1184.2015.02.085

    [13] 付茜.中国页岩油勘探开发现状、挑战及前景[J].石油钻采工艺, 2015, 37(4):58-62. http://d.old.wanfangdata.com.cn/Periodical/syzcgy201504023

    FU Qian.The status, challenge and prospect of shale oil exploration and development in China[J].Oil Drilling & Production Technology, 2015, 37(4):58-62. http://d.old.wanfangdata.com.cn/Periodical/syzcgy201504023

    [14] 邹才能, 杨智, 崔景伟, 等.页岩油形成机制、地质特征及发展对策[J].石油勘探与开发, 2013, 40(1):14-26. http://d.old.wanfangdata.com.cn/Periodical/syktykf201301002

    ZOU Caineng, YANG Zhi, CUI Jingwei, et al.Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J].Petroleum Exploration and Development, 2013, 40(1):14-26. http://d.old.wanfangdata.com.cn/Periodical/syktykf201301002

    [15] 李皋, 孟英峰, 唐洪明, 等.砂岩气藏水基欠平衡钻井逆流自吸效应实验研究[J].天然气工业, 2007, 27(1):75-77. doi: 10.3321/j.issn:1000-0976.2007.01.022

    LI Gao, MENG Yingfeng, TANG Hongming, et al.Laboratory study on backwash imbibition generated during WBM underbalanced drilling in sandstone gas reservoirs[J].Natural Gas Industry, 2007, 27(1):75-77. doi: 10.3321/j.issn:1000-0976.2007.01.022

    [16] 徐加放, 邱正松.泥页岩水化-力学耦合模拟实验装置的研制[J].中国石油大学学报(自然科学版), 2006, 30(3):63-66. doi: 10.3321/j.issn:1000-5870.2006.03.014

    XU Jiafang, QIU Zhengsong.Simulation test equipment of coupled hydra-mechanics of shales[J].Journal of China University of Petroleum(Edition of Natural Science), 2006, 30(3):63-66. doi: 10.3321/j.issn:1000-5870.2006.03.014

    [17] 王滢, 唐洪明, 谢晓永, 等.致密砂岩气藏水基欠平衡钻井损害评价[J].天然气工业, 2008, 28(12):71-73. doi: 10.3787/j.issn.1000-0976.2008.12.020

    WANG Ying, TANG Hongming, XIE Xiaoyong, et al.Evaluation on the damage degree of water-based under-balanced drilling technology applied in tight sandstone gas reservoirs[J].Natural Gas Industry, 2008, 28(12):71-73. doi: 10.3787/j.issn.1000-0976.2008.12.020

    [18]

    van OORT E, HALE A H, MODY F K, et al.Transport in shales and the design of improved water-based shale drilling fluids[J].SPE Drilling & Completion, 1996, 11(3):137-146.

    [19] 王萍, 屈展, 黄海.地层水矿化度对硬脆性泥页岩蠕变规律影响的试验研究[J].石油钻探技术, 2015, 43(5):63-68. doi: 10.11911/syztjs.201505011

    WANG Ping, QU Zhan, HUANG Hai.Experimental study of the effect of formation water salinity on creep laws of the hard brittle shale[J].Petroleum Drilling Techniques, 2015, 43(5):63-68. doi: 10.11911/syztjs.201505011

    [20] 毛惠, 邱正松, 黄维安, 等.温度和压力对黏土矿物水化膨胀特性的影响[J].石油钻探技术, 2013, 41(6):56-61. doi: 10.3969/j.issn.1001-0890.2013.06.011

    MAO Hui, QIU Zhengsong, HUANG Weian, et al.The effects of temperature and pressure on the hydration swelling characteristics of clay mineral[J].Petroleum Drilling Techniques, 2013, 41(6):56-61. doi: 10.3969/j.issn.1001-0890.2013.06.011

    [21]

    NASERI M, SINAYUC C.Numerical modeling of counter-current spontaneous imbibition during underbalanced drilling[R].SPE 152412, 2012.

    [22] 肖绒, 何世明, 吕振虎.毛管力作用下的欠平衡钻井水侵规律研究[J].油气藏评价与开发, 2016, 6(1):50-55. doi: 10.3969/j.issn.2095-1426.2016.01.012

    XIAO Rong, HE Shiming, LYU Zhenhu.Research of water invasion of underbalanced drilling under capillary force[J].Reservoir Evaluation and Development, 2016, 6(1):50-55. doi: 10.3969/j.issn.2095-1426.2016.01.012

    [23] 李淑霞, 谷建伟.油藏数值模拟基础[M].东营:中国石油大学出版社, 2009:134-144.

    LI Shuxia, GU Jianwei.Reservoir numerical simulation basis[M].Dongying:China University of Petroleum Press, 2009:134-144.

    [24] 蒋雨江.J函数平均毛管力三维三相渗流数值模拟研究[D].成都: 西南石油大学, 2014.

    JIANG Yujiang.Numerical simulation of three-phase three-dimensional flow considering average capillary pressure of J Function[D].Chengdu: Southwest Petroleum University, 2014.

    [25]

    WONG R.Swelling and softening behaviour of La Biche shale[J].Revue Canadienne de Géotechnique, 1998, 35(2):206-221. doi: 10.1139/t97-087

    [26] 黄荣樽, 陈勉, 邓金根, 等.泥页岩井壁稳定力学与化学的耦合研究[J].钻井液与完井液, 1995, 12(3):15-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500659969

    HUANG Rongzun, CHEN Mian, DENG Jingen.Study on shale stability of wellbore by mechanics coupling with chemistry method[J].Drilling Fluid & Completion Fluid, 1995, 12(3):15-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500659969

    [27] 刘向君, 罗平亚.岩石力学与石油工程[M].北京:石油工业出版社, 2004:118-120.

    LIU Xiangjun, LUO Pingya.Rock mechanics and petroleum engineering[M].Beijing:Petroleum Industry Press, 2004:118-120.

  • 期刊类型引用(6)

    1. 张俊成,李军,张辉,连威,刘献博,王典,李辉. 多级压裂对生产套管抗外挤强度的影响分析. 石油机械. 2025(04): 71-79 . 百度学术
    2. 陈旻,郭小涛,张武滔,张志杰. 高效页岩气井套管修复工艺技术研究. 机械工程师. 2025(05): 136-140 . 百度学术
    3. 席武军,谢津梁,赵智成,刘宝振,穆总结. 小井眼套管整圆工具有限元力学计算. 科学技术与工程. 2024(03): 1029-1035 . 百度学术
    4. 邹林浩,宋杨,苏义脑,李玮,赵欢,盖京明,李卓伦,焦圣杰. 水平井分段压裂套管孔眼冲蚀机理研究. 特种油气藏. 2024(05): 127-135 . 百度学术
    5. 谭鹏,陈朝伟,赵庆,刘纪含,张谧. 页岩气多簇压裂断层活化机理与控制方法. 石油钻探技术. 2024(06): 107-116 . 本站查看
    6. 赵欢,李玮,唐鹏飞,王晓,张明慧,王剑波. 压裂工况下近井筒地应力及套管载荷分布规律研究. 石油钻探技术. 2023(05): 106-111 . 本站查看

    其他类型引用(0)

图(13)
计量
  • 文章访问数:  9371
  • HTML全文浏览量:  4594
  • PDF下载量:  40
  • 被引次数: 6
出版历程
  • 收稿日期:  2018-03-20
  • 修回日期:  2018-09-30
  • 网络出版日期:  2022-09-08
  • 刊出日期:  2018-12-31

目录

/

返回文章
返回