数字钻头技术现状与发展建议

黄哲, 张伟强, 吴仲华

黄哲,张伟强,吴仲华. 数字钻头技术现状与发展建议[J]. 石油钻探技术,2024,52(5):124−129. DOI: 10.11911/syztjs.2024086
引用本文: 黄哲,张伟强,吴仲华. 数字钻头技术现状与发展建议[J]. 石油钻探技术,2024,52(5):124−129. DOI: 10.11911/syztjs.2024086
HUANG Zhe, ZHANG Weiqiang, WU Zhonghua. Status and development trend of digital bit technologies [J]. Petroleum Drilling Techniques, 2024, 52(5):124−129. DOI: 10.11911/syztjs.2024086
Citation: HUANG Zhe, ZHANG Weiqiang, WU Zhonghua. Status and development trend of digital bit technologies [J]. Petroleum Drilling Techniques, 2024, 52(5):124−129. DOI: 10.11911/syztjs.2024086

数字钻头技术现状与发展建议

基金项目: 中国石化科技攻关项目“智能钻头参数感知与优化控制技术”(编号:P23219)、山东省中央引导地方科技发展专项资金项目“海洋油气钻井数字化技术创新平台建设”(编号:YDZX2022015)和中石化石油工程有限公司课题“PDC钻头四参数采集系统研制与应用”(编号:AMBG220089)联合资助。
详细信息
    作者简介:

    黄哲(1990—),男,山东东营人,2013年毕业于中国石油大学(北京)石油工程专业,2016年获中国石油大学(北京)石油与天然气工程专业工程硕士学位,2020年获中国石油大学(北京)油气井工程专业工学博士学位,高级工程师,主要从事微小井眼轨迹测控、井下装备研制、优化参数钻井、智能钻井和软件开发等方面的研究工作。E-mail:bob202303@163.com

  • 中图分类号: TE921+.1

Status and Development Trend of Digital Bit Technologies

  • 摘要:

    传统钻具组合力学结构和动力钻具工作特性的限制,测量装置无法获取钻头位置处的真实数据,导致智能钻井在决策与控制层面存在风险。国内外油服公司开发了多种数字钻头测量系统,在不改变钻头结构的前提下能够安装在钻头内部进行数据采集,为理论研究、钻井设计和钻井决策控制等提供了数据支持。为推动我国数字钻头的发展,调研了现有各类数字钻头发展现状,讨论了数字钻头技术的应用场景和发展趋势,并提出了技术发展建议。

    Abstract:

    Due to the limitation of the operating characteristics of the conventional bottom hole assembly (BHA) and the power drilling tool, the measuring device fails to obtain the real data at the bit position, which leads to the risk of intelligent drilling at the decision-making and control levels. Chinese and foreign oilfield service companies have developed a variety of digital bit measurement systems. These digital bit measurement systems can be installed inside the bit for data acquisition without changing the structure of the bit, providing data support for theoretical research, drilling design, and drilling decision control. In order to promote the development of digital bits in China, various kinds of digital bits were investigated. The status, application scenarios, and development trend of digital bits were discussed, and development suggestions were put forward.

  • 图  1   探管式数字钻头

    Figure  1.   Probe type digital drill bit

    图  2   探管在钻压、扭矩作用下的应力分布

    Figure  2.   Stress distribution of probe under weight on bit and torque

    图  3   偏置式数字钻头

    Figure  3.   Offset type drill bit

    图  4   阵列式数字钻头

    Figure  4.   Array type drill bit

    图  5   钻头工况稳定性图版

    Figure  5.   Stability chart of drill bit working condition

    图  6   以数字钻头为核心的智能化科学钻井技术架构

    Figure  6.   Technical framework of intelligent and scientific drilling based on digital drill bit

    表  1   典型数字钻头参数测量系统的对比

    Table  1   Comparison of typical digital drill bit parameter measurement systems

    系统类型工作方式运动测量应力测量续航能力数据可靠性可拓展性结构复杂程度适配钻头尺寸/mm
    探管式锂电池供电,离线采集、事后分析直接测量不能测量简单≥142.9
    偏置式简化模型简化模型简单≥120.7
    阵列式阵列解耦电桥解耦复杂≥215.9
    下载: 导出CSV
  • [1] 黄哲,吴仲华,李成,等. 智能钻头技术研究与应用探索[J]. 石油机械,2023,51(10):67–76.

    HUANG Zhe, WU Zhonghua, LI Cheng, et al. Research and application of intelligent bit technology[J]. China Petroleum Machinery, 2023, 51(10): 67–76.

    [2]

    DONG Guangjian, CHEN Ping. A review of the evaluation, control, and application technologies for drill string vibrations and shocks in oil and gas well[J]. Shock and Vibration, 2016, 2016: 7418635.

    [3]

    de WARDT J P. Current state 2019 & future state 2025[EB/OL]. [2024-07-15]. https://dsaroadmap.org/wp-content/uploads/2019/06/4-of-14-Current-State-Future-State-190531.pdf

    [4]

    Halliburton. Cerebro® in-bit sensing[EB/OL]. [2024-07-15]. https://www.halliburton.com/en/products/cerebro-bit-sensor-package.

    [5]

    CHEN Xiwu, HUANG Zhe. Novel tool of in-bit measurement for new clean geo-energy exploitation[C]//Proceedings of the 3rd International Conference on Green Energy, Environment and Sustainable Development (GEESD2022). Amsterdam: IOS Press, 2022: 1223-1232.

    [6] 黄哲. 探管式智能钻头参数测量装置研制与现场试验[J]. 石油钻探技术,2024,52(4):34–43. doi: 10.11911/syztjs.2024004

    HUANG Zhe. Development and field test of probe-type intelligent bit parameter measurement device[J]. Petroleum Drilling Techniques, 2024, 52(4): 34–43. doi: 10.11911/syztjs.2024004

    [7]

    HUANG Zhe, HUANG Zhongwei, SU Yinao, et al. A feasible method for the trajectory measurement of radial jet drilling laterals[J]. SPE Drilling & Completion, 2020, 35(1): 125–135.

    [8]

    HUANG Zhe, HUANG Zhongwei, SU Yinao, et al. Where the laterals go? A feasible way for the trajectory measurement of radial jet drilling wells[R]. SPE 192140, 2018.

    [9]

    HUANG Zhe, HUANG Zhongwei, WU Long, et al. Trajectory measurement of radial jet drilling wells: Improved tool and data processing[J]. Journal of Energy Resources Technology, 2020, 142(3): 032902. doi: 10.1115/1.4044622

    [10]

    NOV. BlackBox eclipse II tool[EB/OL]. [2024-07-15]. https://www.nov.com/products/blackbox-eclipse-ii-tool.

    [11]

    Baker Hughes. MultiSense dynamics mapping system[EB/OL]. [2024-07-15]. https://www.bakerhughes.com/drilling/drilling-optimization-services/multisense-dynamics-mapping-system.

    [12]

    Halliburton. Cerebro Force™ in-bit sensing[EB/OL]. [2024-07-15]. https://www.halliburton.com/en/products/cerebro-force-bit-sensing.

    [13] 刘伟,周英操,王瑛,等. 井下振动测量、分析原理研究[J]. 石油钻采工艺,2012,34(1):14–18. doi: 10.3969/j.issn.1000-7393.2012.01.005

    LIU Wei, ZHOU Yingcao, WANG Ying, et al. Study on downhole vibration measurement and analysis theory[J]. Oil Drilling & Production Technology, 2012, 34(1): 14–18. doi: 10.3969/j.issn.1000-7393.2012.01.005

    [14] 黄哲. 面向油气钻井振动测量的空间三轴加速度传感器阵列研究[J]. 电子测量技术,2021,44(8):155–160.

    HUANG Zhe. Method of drilling vibration measurement based on spatial array of accelerometers[J]. Electronic Measurement Technology, 2021, 44(8): 155–160.

    [15]

    MACPHERSON J D, PAUL P, BEHOUNEK M, et al. A framework for transparency in drilling mechanics and dynamics measurements[R]. SPE 174874, 2015.

    [16]

    PHILLIPS A, GAVIA D, NOEL A, et al. Adaptive PDC drill bit reduces stick-slip and improves ROP in the midland basin[R]. SPE 189706, 2018.

    [17]

    WU S X, PAEZ L, PARTIN U, et al. Decoupling stick-slip and whirl to achieve breakthrough in drilling performance[R]. SPE 128767, 2010.

    [18]

    LEDGERWOOD L W W, JAIN J R, HOFFMANN O J, et al. Downhole measurement and monitoring lead to an enhanced understanding of drilling vibrations and polycrystalline diamond compact bit damage[J]. SPE Drilling & Completion, 2013, 28(3): 254–262.

    [19]

    SUGIURA J, JONES S. A drill bit and a drilling motor with embedded high-frequency (1600 Hz) drilling dynamics sensors provide new insights into challenging downhole drilling conditions[J]. SPE Drilling & Completion, 2019, 34(3): 223–247.

    [20]

    BAUMGARTNER T, VAN OORT E. Pure and coupled drill string vibration pattern recognition in high frequency downhole data[R]. SPE 170955, 2014.

    [21]

    CHEN Gang, CHEN Mian, HONG Guobin, et al. A new method of lithology classification based on convolutional neural network algorithm by utilizing drilling string vibration data[J]. Energies, 2020, 13(4): 888. doi: 10.3390/en13040888

    [22]

    HUANG Zhe, YAN Xiuliang, DAI Yanan. Vibration control in optimized drilling and key issues to be applied in new clean geo-energy exploitation[C]//Proceedings of the 3rd International Conference on Green Energy, Environment and Sustainable Development (GEESD2022). Amsterdam: IOS Press, 2022: 38-48.

图(6)  /  表(1)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  36
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-17
  • 修回日期:  2024-09-04
  • 网络出版日期:  2024-09-24
  • 刊出日期:  2024-09-24

目录

    /

    返回文章
    返回