New Development Directions for Oil and Gas Engineering Technologies under the Background of Energy Transformation
-
摘要:
在能源转型背景下,能源市场已经开始向低碳和新能源方向发生根本性改变。为了保证油气在能源行业的竞争性,油气公司坚守油气主营业务,实施“油气+低碳、负碳技术”的能源转型路径,油气工程技术作为支撑油气和新能源高效开发的重要手段,机遇与挑战并存。在总结能源转型发展形势及其对油气工程技术创新影响的基础上,分析了油气工程技术创新发展新方向;结合我国油气行业发展面临的挑战,提出了技术研发由经济效益驱动向价值驱动转变、持续加强降本增效技术推广应用力度、强化低碳油气工程技术研发、分类施策推动油气与新能源的深度融合和注重技术创新管理模式的探索等发展建议。这对于尽快形成我国油气工程新型技术创新与管理创新体系、提升油气行业竞争力具有一定的指导意义。
Abstract:In the context of energy transformation, the energy market has begun to undergo fundamental changes towards low-carbon and new energy. In order to ensure the competitiveness of oil and gas in the energy industry, oil and gas companies adhere to their main business and implement the energy transformation path of “oil and gas with low and negative carbon technology”. Oil and gas engineering technologies, as important approaches to support the efficient development of oil and gas and new energy, present both opportunities and challenges. On the basis of summarizing the development situation of energy transformation and its impact on oil and gas engineering technology innovation, the new development directions for oil and gas engineering technology innovation were analyzed. Based on the development challenges faced by China’s oil and gas industry, development suggestions were put forward, including transforming technology research and development from being driven by economic benefits to value, continuously strengthening the promotion and application of cost reduction and efficiency enhancement technologies, deepening the research and development of low-carbon oil and gas engineering technologies, implementing classified policies to promote the deep integration of oil and gas with new energy, and exploring innovative management models for technologies. These suggestions have certain guiding significance for rapidly forming a new technological innovation and management innovation system for oil and gas engineering in China and enhancing the competitiveness of the oil and gas industry.
-
-
表 1 欧美已投入使用的地下盐穴储氢库
Table 1 Underground rock cavern for hydrogen storage in use in the United States and Europe
盐穴储氢库 容量/104m3 深度/m 压力/MPa 净存能量/(GW·h) 建成时间 Clemens(US) 58.0 850 7.0~13.5 81 1983年 Moss Bluff(US) 56.6 850~ 1400 5.5~15.2 123 2007年 Spindletop(US) 90.6 850~ 1400 15.0 274 2014年 Teesside(UK) 21.0 370 4.5 27 1972年 -
[1] BECK C, RASHIDBEIGI S, ROELOFSEN O, et al. The future is now: how oil and gas companies can decarbonize[EB/OL]. (2020-01-07)[2024-01-13]. https://www.mckinsey.com/industries/oil-and-gas/our-insights/the-future-is-now-how-oil-and-gas-companies-can-decarbonize.
[2] 王敏生. 油气井钻完井作业碳减排发展方向与建议[J]. 石油钻探技术,2022,50(6):1–6. WANG Minsheng. Development direction and suggestions for carbon emission reduction during drilling and completion[J]. Petroleum Drilling Techniques, 2022, 50(6): 1–6.
[3] 李阳,王敏生,薛兆杰,等. 绿色低碳油气开发工程技术的发展思考[J]. 石油钻探技术,2023,51(4):11–19. LI Yang, WANG Minsheng, XUE Zhaojie, et al. Thoughts on green and low-carbon oil and gas development engineering technolo-gies[J]. Petroleum Drilling Techniques, 2023, 51(4): 11–19.
[4] IEA. The oil and gas industry in energy transitions[EB/OL]. (2020-01-01)[2024-01-13]. https://iea.blob.core.windows.net/assets/4315f4ed-5cb2-4264-b0ee-2054fd34c118/The_Oil_and_Gas_Industry_in_Energy_Transitions.pdf.
[5] IEA. World energy investment 2022[EB/OL]. (2022-06-01)[2022-12-28]. https://www.iea.org/reports/world-energy-investment-2022.
[6] LATHAM A, WILSON J, GAYLORD B. Energy super basins: where the renewable, CCS and upstream stars align[EB/OL]. (2022-07-01) [2024-01-13]. https://www.woodmac.com/horizons/energy-super-basins-where-the-renewable-ccs-and-upstream-stars-align/. LATHAM A, WILSON J, GAYLORD B. Energy super basins: where the renewable, CCS and upstream stars align[EB/OL]. (2022-07-01) [2024-01-13]. https://www.woodmac.com/horizons/energy-super-basins-where-the-renewable-ccs-and-upstream-stars-align/.
[7] COUCH M. DNV outlook: energy transition “still in the starting blocks” [EB/OL]. (2023-10-23) [2024-01-13]. https://jpt.spe.org/dnv-outlook-energy-transition-still-in-the-starting-blocks.
[8] Baker Hughes. The path to net-zero and a sustainable energy future[EB/OL]. (2021-01-01)[2024-01-13]. https://www.bakerhughes.com/sites/bakerhughes/files/2021-01/Baker%20Hughes%20-%20The%20path%20to%20net-zero%20and%20a%20sustainable%20energy%20future_0.pdf.
[9] ALFRED D, MCLAUGHLIN J. Midland Basin Wolfcamp resource assessment using well spacing normalized recovery per section[R]. URTEC 3707494, 2022.
[10] COURTIER J, WICKER J, JEFFERS T. Optimizing the development of a stacked continuous resource play in the Midland Basin[R]. URTEC 2461811, 2016.
[11] SHUMWAY M. Building a better shale well with biosurfactants improves production and ROI[J]. World Oil, 2022, 243(1): 35–38.
[12] POMERANTZ A E, ERIKSSON S T. Tackling methane emissions: It's time to act[J]. World Oil, 2022, 243(3): 22–26.
[13] WHITFIELD S. Precision leverages automation to take productivity to next level[J]. Drilling Contractor, 2023, 79(6): 48–49.
[14] MORRISON J. The next generation of land drilling: hybrid-powered rig combined with energy storage[J]. World Oil, 2021, 242(3): 57–58.
[15] WHITFIELD S. Zero-emission power-generation system in development for land rigs using hydrogen fuel cells[J]. Drilling Contractor, 2022, 78(5): 20–21.
[16] MCCLURE M. Fervo energy’s ‘project red’ results are a historic breakthrough for geothermal energy: what comes next?[EB/OL]. (2023-07-19)[2024-01-13]. https://www.resfrac.com/blog/fervo-energys-project-red-results-are-a-historic-breakthrough-for-geothermal-energy-what-comes-next.
[17] KELLY J J, MCDERMOTT C I. Numerical modelling of a deep closed-loop geothermal system: evaluating the Eavor-Loop[J]. AIMS Geosciences, 2022, 8(2): 175–212. doi: 10.3934/geosci.2022011
[18] 潘松圻,邹才能,王杭州,等. 地下储氢库发展现状及气藏型储氢库高效建库十大技术挑战[J]. 天然气工业,2023,43(11):164–180. PAN Songqi, ZOU Caineng, WANG Hangzhou, et al. Development status of underground hydrogen storages and top ten technical challenges to efficient construction of gas reservoir-type underground hydrogen storages[J]. Natural Gas Industry, 2023, 43(11): 164–180.
[19] 朱彤,李雅卓. 德国能源转型进程中氢能发展经验及启示[J]. 世界石油工业,2022,29(5):11–16. ZHU Tong, LI Yazhuo. Development and enlightenment of hydrogen energy in the German energy transition process[J]. World Petroleum Industry, 2022, 29(5): 11–16.
[20] 纪钦洪,于广欣,黄海龙,等. 海上风电制氢技术现状与发展趋势[J]. 中国海上油气,2023,35(1):179–186. JI Qinhong, YU Guangxin, HUANG Hailong, et al. Present status and developing trend of offshore wind-to-hydrogen technology[J]. China Offshore Oil and Gas, 2023, 35(1): 179–186.
[21] ZIVAR D, KUMAR S, FOROOZESH J. Underground hydrogen storage: a comprehensive review[J]. International Journal of Hydrogen Energy, 2021, 46(45): 23436–23462. doi: 10.1016/j.ijhydene.2020.08.138
[22] 周庆凡,张俊法. 地下储氢技术研究综述[J]. 油气与新能源,2022,34(4):1–6. ZHOU Qingfan, ZHANG Junfa. Review of underground hydrogen storage technology[J]. Petroleum and New Energy, 2022, 34(4): 1–6.
[23] 李阳,赵清民,薛兆杰. “双碳”目标下二氧化碳捕集、利用与封存技术及产业化发展路径[J]. 石油钻采工艺,2023,45(6):655–660. LI Yang, ZHAO Qingmin, XUE Zhaojie. Carbon dioxide capture, utilization and storage technology and industrialization development path under the dual carbon goal[J]. Oil Drilling & Production Technology, 2023, 45(6): 655–660.
[24] WHITFIELD S. CCS shows great promise, but scaling up requires collaboration, investment[J]. Drilling Contractor, 2023, 79(3): 14–19.
-
期刊类型引用(2)
1. 王善哲,张宏奇,李忠诚,刘书孟,程铁航,周跃斌,孙璞,王禹祁. 大庆萨南油田零碳站场建设工艺. 油气储运. 2025(03): 325-333 . 百度学术
2. 李子欣. 能源转型背景下京津冀地区天然气与氢能融合发展分析. 城市燃气. 2025(05): 48-52 . 百度学术
其他类型引用(0)