超深井工程理论与技术若干研究进展及发展建议

高德利, 黄文君

高德利,黄文君. 超深井工程理论与技术若干研究进展及发展建议[J]. 石油钻探技术,2024, 52(2):1-11. DOI: 10.11911/syztjs.2024024
引用本文: 高德利,黄文君. 超深井工程理论与技术若干研究进展及发展建议[J]. 石油钻探技术,2024, 52(2):1-11. DOI: 10.11911/syztjs.2024024
GAO Deli, HUANG Wenjun. Research and development suggestions on theory and techniques in ultra-deep well engineering [J]. Petroleum Drilling Techniques,2024, 52(2):1-11. DOI: 10.11911/syztjs.2024024
Citation: GAO Deli, HUANG Wenjun. Research and development suggestions on theory and techniques in ultra-deep well engineering [J]. Petroleum Drilling Techniques,2024, 52(2):1-11. DOI: 10.11911/syztjs.2024024

超深井工程理论与技术若干研究进展及发展建议

基金项目: 国家自然科学基金重大项目课题“深海多金属结核采输系统总体设计理论与风险防控方法”(编号:52394255)、国家自然科学基金优秀青年科学基金项目“油气井管柱力学与工程”(编号:52222401)联合资助。
详细信息
    作者简介:

    高德利(1958—),男,山东禹城人,1982年毕业于华东石油学院钻井工程专业,1984年获西南石油学院石油矿场机械专业硕士学位,1990年获石油大学油气田开发工程专业博士学位,教授,中国科学院院士,长期从事复杂油气井工程领域的科学研究与实践。系本刊编委。E-mail: gaodeli@cup.edu.cn

    通讯作者:

    黄文君,huangwenjun@cup.edu.cn

  • 中图分类号: TE245

Research and Development Suggestions on Theory and Techniques in Ultra-Deep Well Engineering

  • 摘要:

    超深井工程受到高温高压、复杂地层、超长井眼和腐蚀介质等多重因素约束,其安全高效作业面临全方位的技术挑战。为此,针对超深井工程的安全高效设计控制问题,介绍了该工程的发展概况与技术特点;选取井眼轨迹预测与防斜打快、钻柱振动特性分析与减振控制、钻井延伸极限预测与设计控制,以及套管失效风险评估与安全控制等几个重要理论与技术问题,介绍了国内外的相关研究进展及笔者团队的最新研究成果;然后,针对超深井工程提出了若干创新发展建议。研究结果表明,超深井工程理论与技术的发展整体呈现出体系化、科学化、多学科交叉、地质与工程一体化等基本特点。建议在基础理论问题、关键核心技术、技术协同关系、技术迭代模式和多学科交叉融合等方面加强创新研究,以持续推进超深井工程基础理论与关键技术创新发展。

    Abstract:

    Ultra-deep well engineering is constrained by multiple factors such as high temperature and high pressure, complicated formations, ultra-long wellbores, and corrosive medium, resulting in all-around technical challenges for safe and efficient operations. Therefore, In view of the safe and efficient design control problems in ultra-deep well engineering was studied, the development overview and technical characteristics of ultra-deep well engineering were summarized.Several important theoretical and technical issues were introduced, including well trajectory prediction and fast drilling with deviation prevention, characteristic analysis and control technology of downhole drilling string vibration, prediction and design control techniques of drilling extension limit, and casing failure risk assessment and safety control, etc. In addition, research progress in China and abroad, and the latest research results of the authors’ team were introduced. Finally, some suggestions were put forward on innovative development for ultra-deep well engineering. The results suggest that the overall development of theory and techniques in ultra-deep well engineering have the typical characteristics of systematic, scientific, interdisciplinary and geology-engineering integration. Strengthening the innovative research on fundamental theoretical issues is recommended, along with key and core techniques, technological collaboration relationships, technological iteration modes, and interdisciplinary integration, so as to promote the continuous innovative development of basic theory and key techniques in ultra-deep well engineering.

  • 我国页岩油资源丰富,储量超过700×108 t,准噶尔盆地、松辽盆地、渤海湾和鄂尔多斯盆地等多个区域均发现页岩油,部分地区初具开发规模[1-3]。松辽盆地北部大庆古龙页岩油为典型的陆相页岩油,主要目的层分布范围广、厚度大,岩性以层状页岩、纹层状页岩和泥岩为主。大庆油田已在古龙区块完成3口页岩油预探水平井,完钻井深2 135~4 230 m,水平段长1 630~2 220 m,钻井过程中存在井壁不稳定、井眼缩径、钻进摩阻大和定向困难等问题,导致钻井周期长、机械钻速低,全井平均机械钻速仅12.38 m/h[4-6]。国外采用LWD+螺杆定向、旋转导向、水力振荡器和高效PDC钻头等工具和采取优化钻井参数等措施,以提高页岩油钻井速度;国内川渝地区、渤海湾和新疆玛湖地区等页岩油气开发的重点区域,采用高造斜旋转导向系统、水力振荡器和高效PDC钻头等方法提高钻井速度[7-8]

    笔者根据现场实钻经验及现有技术水平,对井身结构、井眼轨道进行优化,以降低施工难度;针对二开直井段缩径、三开造斜段和水平段钻井周期长等问题,研究了井壁修整工具、旋冲螺杆钻井工具、清砂接头和水力振荡器等工具,并进行了钻井参数优化,形成了大庆页岩油水平井钻井提速技术,现场应用效果较好,为大庆油田采用水平井高效开发页岩油提供了技术支撑。

    大庆油田页岩油储层岩性以富含有机质的泥岩、页岩为主,黏土矿物含量高,且多孔多缝,呈纹层状结构,地层水敏性强,易发生层间散裂。目的层上部为泥岩、粉砂质泥岩互层,中下部为灰黑、灰绿、紫红色泥岩、粉砂质泥岩互层,存在长泥岩段,钻进时易出现缩径、泥包钻头和卡钻等复杂情况。泥岩遇水膨胀导致缩径,影响钻井时效,增大井下遇阻卡钻事故风险;造斜段采用三维井眼轨道,造斜率难保证,入靶精准度低,并且施工困难;水平井水平段长,岩屑易堆积形成岩屑床,导致钻进过程中摩阻扭矩大,最大摩阻超过343 kN,最大扭矩24.5 kN·m,严重影响了水平段钻井速度。分析认为,大庆页岩油地层钻井提速主要存在以下技术难点:

    1)大庆页岩油水平井上部地层存在流砂层和大段泥岩,特别是目的层上部地层水化膨胀,易引起井眼缩径,导致起下钻阻卡、测井和固井前需多次反复通井,影响钻井时效;页岩储层黏土矿物含量高,井壁易剥落形成岩屑床,导致卡钻、遇阻和憋泵故障频发,已施工的3口页岩油水平井均存在不同程度的井壁剥落或坍塌、频繁憋泵和卡钻等问题。

    2)大庆油田页岩油开发以丛式井为主,一般设计为大位移三维井眼轨道,在增斜的同时要扭方位,与常规二维井眼轨道相比,钻进摩阻增加40%以上;长水平段三维水平井因位垂比大、裸眼段长,消除偏移距后易形成井眼拐点,造成井眼轨迹控制难度大[9-13]。已钻井采用三维井眼轨道,造斜段钻进过程中滑动摩阻扭矩急剧增大,定向工具和钻头作用力方向易偏离设计轨道,工具面不稳,滑动钻进比例高,严重影响机械钻速。

    3)页岩油水平井水平段长,岩屑不易返出,在钻柱低边堆积形成岩屑床,钻进后期钻柱与井壁之间摩阻扭矩大,钻头难以有效传递钻压,钻具极易发生弯曲,导致钻具疲劳损坏;滑动钻进时托压严重,工具面失稳,机械钻速低。已施工3口水平井水平段的平均机械钻速为8.05 m/h,与全井平均机械钻速(12.38 m/h)相差较大。

    针对页岩油水平井钻井存在的井壁不稳定、井眼轨迹控制困难和钻进摩阻大等问题,提出了提高钻井速度、减少井下故障的技术思路,开展了井身结构、井眼轨道和钻井参数优化及钻井提速配套工具研究,形成了大庆油田页岩油水平井钻井提速技术,达到了提高单趟钻进尺、减少井下故障、提高机械钻速和提高“一趟钻”成功率的目的。

    原井身结构采用3层套管结构,二开钻至造斜点下技术套管,三开钻进造斜段和水平段,技术套管下深2 000 m左右,三开下部地层井壁失稳,影响了三开造斜段和水平段钻井安全和效率。根据大庆页岩油地质特性及后期压裂施工工艺,依据钻井安全、提高钻井效率的原则,对井身结构进行了优化:一开,采用ϕ444.5 mm钻头钻进,下入ϕ339.7 mm表层套管,水泥返至地面,封隔浅部水层;二开,采用ϕ311.1 mm钻头钻进,下入ϕ244.5 mm技术套管,水泥返至地面,封隔目的层以上大段易垮塌泥页岩层,为三开水平段钻进提供安全施工环境;三开,采用ϕ215.9 mm钻头钻进,下入ϕ139.7 mm油层套管,水泥返至地面,为后期压裂提供安全保障。

    在实现地质设计目的的前提下,充分考虑地质特征、井眼轨迹控制技术、钻进摩阻扭矩及钻井参数等因素,优化井眼轨道,以降低施工难度。已钻井采用三维井眼轨道,由于二开为直井段,三开造斜段需要同时进行增斜和扭方位,导致滑动钻进比例高、井眼轨道不平滑、钻进摩阻增大和机械钻速低。针对以上问题,优化井眼轨道,依据造斜率小于6.5°/30 m的原则,在实现地质目的的前提下,兼顾降低施工难度,合理上移造斜点,二开就进行造斜施工,以降低造斜率,提高井眼平滑度。在保证水平段长度的前提下,将三维井眼轨道优化为双二维井眼轨道,上部二维井段完成偏移距,下部井段按照常规二维水平井施工,实现三维变二维。采用双二维井眼轨道井眼轨迹更平滑,井眼曲率最高降低20%,复合钻比例提高25%,钻进摩阻、扭矩更小,造斜段和水平段机械钻速显著提高。

    页岩油水平井二开上部姚家组等地层易缩径,导致ϕ311.1 mm井眼起下钻阻卡,测井固井前需多次往复通井,严重影响钻井周期。为解决此问题,研制了随钻井壁修整工具(见图1)。该工具设计为四直棱结构,直棱侧面、上下斜面设计有切削齿。钻柱旋转过程中,切削齿进入缩径井段对其进行扩眼、修整,易缩径井段位置每隔200~300 m安放1只井壁修整工具,解决了泥岩段缩径需要多次通井的问题,可显著提高钻井时效。

    图  1  井壁修整工具的结构
    Figure  1.  Structure of the borehole wall dressing tool

    为提高页岩油二开造斜段造斜率和机械钻速,研制了旋冲螺杆钻井工具。该工具为螺杆钻具+冲击工具一体化设计(见图2),采用高输出扭矩的等壁厚高效螺杆,冲击部分能够将钻井液的压力能量转化为旋转破岩动力,输出高频冲击辅助钻头破岩,提高机械钻速。通过整体方案设计,旋冲螺杆工具弯点至连接钻头端面距离小于常规螺杆弯点至钻头端面距离,可提高造斜率。工具主要技术参数为:额定工作压耗≤8 MPa,输出扭矩8~18 kN·m,工作转速70~130 r/min,冲击频率10~40 Hz,工作温度0~120 ℃,使用寿命不小于180 h,弯点距离不大于2.00 m。旋冲螺杆钻井工具可以保护钻头,提高单只钻头的进尺和钻井速度,目前该工具已形成系列化产品及成熟的现场施工工艺。

    图  2  旋冲螺杆钻井工具的结构
    Figure  2.  Structure of the rotary screw

    页岩油水平井井壁易失稳,大斜度段、水平段易形成岩屑床,仅依靠水力参数优化和工艺改进不能完全解决井眼清洁的问题[14],为此,研制了清砂接头(见图3)。该接头设计有V形螺旋槽式流道和反向螺旋结构,采用漏斗式结构,流道入口尺寸大于出口尺寸,悬浮岩屑进入V形螺旋槽后流速急剧增大并改变方向,提高岩屑运移速度,上返钻井液流经V形螺旋槽后进入反向螺旋结构形成紊流,可将低边岩屑悬浮在井筒中。工具主要技术参数为:总长1 250 mm,上下接头外径为165 mm;V形螺旋槽长240~350 mm,最大外径165 mm。该工具可以破坏岩屑床,解决页岩油水平井塌块剥落造成的岩屑堆积问题,降低沉砂卡钻风险和水平段钻进摩阻,提高机械钻速。

    图  3  清砂接头的结构
    Figure  3.  Structure of the sand cleaning joint

    针对三开水平段滑动钻进时的托压问题,研制了水力振荡器。该工具主要由振动部分、动力部分和阀体总成组成(见图4),其原理是利用钻井液在流经阀体总成时,因过流面积发生周期性变化从而产生水力脉冲,将钻具与井壁之间的静摩擦力转变为动摩擦力,降低钻柱与井壁之间的摩阻,提高钻压传递效率[15-16]。应用水力振荡器能够给钻头施加真实的钻压,并保证工具面稳定,提高水平井钻井效率,降低发生井下故障的概率。水力振荡器主要工作技术参数为:排量32~36 L/s,压降3~4 MPa,频率16~17 Hz,振动幅度3~10 mm,振动冲击力37~43 kN。

    图  4  水力振荡器的结构
    Figure  4.  Structure of the hydraulic oscillator

    根据古龙页岩油地质特性,模拟计算了不同钻速、钻杆条件下返砂所需的最小排量及岩屑床高度。计算结果表明:采用ϕ127.0 mm钻杆,当机械钻速为15.0 m/h、转速为90 r/min、排量为33 L/s时,岩屑床高度为3.2 mm;排量为36 L/s时,岩屑床高度为2.1 mm,排量与岩屑床高度成反比关系;排量超过40 L/s时,对页岩井壁冲刷严重,井壁冲刷力增大25%,因此确定最优排量为33~40 L/s。数值模拟计算结果表明,当转速为90 r/min、钻压为98 kN时,涡动转速可达400 r/min以上,井壁受到瞬时侧向应力最高可达600 MPa。为了减少钻具涡动、钻井液冲刷对井壁稳定的影响,并保证最大限度地携岩,减小岩屑床高度,根据理论计算和现场实践,对钻井参数进行了优化,确定了最优的钻井参数:排量33~40 L/s,转速90~110 r/min,钻压58.8~98.0 kN。采用该钻井参数钻进可达到提速效果。

    大庆油田页岩油水平井钻井提速技术在古龙页岩油区块3口井进行现场试验,平均完钻井深4 691 m,平均机械钻速19.03 m/h,平均钻井周期35.23 d,与该区块之前施工的水平井相比,机械钻速提高53.7%(见表1)。下面以试验1井为例介绍现场试验情况。

    表  1  3口水平井现场试验数据
    Table  1.  Field test data from 3 horizontal wells
    井号井深/
    m
    水平段长/
    m
    机械钻速/
    (m·h–1
    钻井周期/
    d
    钻速提高
    效果,%
    试验1井4 7352 15019.3435.2556.22
    试验2井4 6231 82018.6534.2350.65
    试验3井4 7152 14019.1036.2154.28
    下载: 导出CSV 
    | 显示表格

    试验1井是位于古龙页岩油试验区块的一口开发井,设计井深4 735 m,设计水平段长2 020 m,采用三开井身结构。现场施工时,一开,采用ϕ444.5 mm钻头钻至井深265.00 m,ϕ339.7 mm表层套管下至井深264.48 m;二开,采用ϕ311.1 mm钻头钻至井深2 364.00 m,ϕ244.5 mm技术套管下至井深2 363.42 m;三开,采用ϕ215.9 mm钻头钻至井深4 735.00 m,ϕ139.7 mm生产套管下至井深4 730.58 m。

    二开从井深296.00 m开始进行造斜,第1趟钻采用1.25°旋冲螺杆钻具与ϕ311.1 mm PDC钻头配合的钻具组合,旋冲螺杆钻具增斜能力强,可合理确定滑动钻进和复合钻进比例,提高机械钻速;进尺1 320 m,机械钻速43.56 m/h。第2趟钻采用ϕ311.1 mm PDC钻头+1.25°常规螺杆的钻具组合,距钻头300 m的裸眼段每隔7柱钻杆使用1只井壁修整工具,共使用5只井壁修整工具,防止目的层上部地层缩径导致卡钻。1 700~1 856 m井段钻进过程中工具面不稳,定向托压严重,采用小钻压钻进,并采用大排量循环和井壁修整工具修整缩径井眼,钻进情况得到改善,第2趟钻进尺779 m,机械钻速14.78 m/h。

    三开ϕ215.9 mm井段进尺2 371 m,钻至井深4 735 m,3趟钻完成。第1趟钻采用PDC钻头+1.50°常规螺杆+LWD钻具组合,初期复合钻进正常,钻至井深2 492 m开始定向,定向过程中出现蹩跳钻现象,滑动钻进占比78.82%;钻至井深2 623 m,起钻更换钻头和螺杆;第1趟钻进尺259 m(2 364~2 623 m),机械钻速6.53 m/h。第2趟钻采用PDC钻头+1.50°常规螺杆+LWD+水力振荡器钻具组合,水力振荡器距钻头150 m,滑动钻进占比降至40.74%,机械钻速由6.53 m/h提至12.47 m/h;第2趟钻进尺256 m,进入A靶点后起钻,换旋转导向钻具组合。第3趟钻采用PDC钻头+旋转导向工具+清砂接头钻具组合,距钻头200 m处安放第1只清砂接头,然后每隔5柱钻杆安装1只清砂接头,清砂接头能在一定程度上减小岩屑床高度,降低卡钻风险;第3趟钻进尺1 856 m(2 879~4 735 m),机械钻速18.29 m/h。

    试验1井完钻井深4 735 m,水平段长2 150 m,钻井周期35.25 d,全井平均机械钻速19.03 m/h,其中二开机械钻速高达43.56 m/h,钻井提速效果较好。

    1)针对大庆油田古龙区块页岩油水平井的钻井技术难点,开展了井身结构、井眼轨道和钻井参数优化及钻井提速工具研究和等技术攻关,形成了大庆油田页岩油水平井钻井提速技术。

    2)大庆油田页岩油水平井钻井提速技术解决了地层稳定性差、井眼轨迹控制困难和水平段机械钻速低等技术难点,降低了井下钻井风险,大幅度了提高钻井速度,缩短了钻井周期,为加快大庆油田古龙区块页岩油勘探开发提供了技术支撑。

    3)为了进一步提高页岩油水平井机械钻速,建议加强钻井液井壁稳定井眼清洁技术、高性能旋转导向技术和高效减摩降阻技术等技术攻关,进一步完善页岩油水平井钻井提速技术,更好地满足大庆古龙区块页岩油高效勘探开发的需求。

  • 图  1   钻头与地层相互作用的相关因素[9]

    Figure  1.   Factors related to drill bit-formation interaction[9]

    图  2   底部钻具组合涡动模式示意[47]

    Figure  2.   Whirl mode for bottom-hole assembly[47]

    图  3   钻井延伸极限的三段式分布特征[52]

    Figure  3.   Three-stage distribution characteristics of drilling extension limits[52]

    图  4   磨损与腐蚀作用下的套管强度退化规律[87]

    Figure  4.   Casing strength degradation law under effects of wear and corrosion[87]

  • [1] 李阳,薛兆杰,程喆,等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探,2020,25(1):45–57.

    LI Yang, XUE Zhaojie, CHENG Zhe, et al. Progress and development directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020, 25(1): 45–57.

    [2] 高德利. 油气钻采科技创新:驱动复杂油气田勘探开发事业高效绿色发展[J]. 前瞻科技,2023,2(2):5–10.

    GAO Deli. Technological innovations in drilling and production drive efficient & green exploration and development of the complicated oil & gas fields[J]. Science and Technology Foresight, 2023, 2(2): 5–10.

    [3] 曾义金,金衍,周英操,等. 深层油气钻采技术进展与展望[J]. 前瞻科技,2023,2(2):32–46.

    ZENG Yijin, JIN Yan, ZHOU Yingcao, et al. Progress and prospect of deep oil & gas drilling and production technologies[J]. Science and Technology Foresight, 2023, 2(2): 32–46.

    [4] 高德利,黄文君. 深层、超深层定向钻井中若干基础研究进展与展望[J]. 天然气工业,2024,44(1):1–12.

    GAO Deli, HUANG Wenjun. Basic research progress and prospect in deep and ultra-deep directional drilling[J]. Natural Gas Industry, 2024, 44(1): 1–12.

    [5] 苏义脑,路保平,刘岩生,等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺,2020,42(5):527–542.

    SU Yinao, LU Baoping, LIU Yansheng, et al. Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5): 527–542.

    [6] 高德利. 复杂地质条件下深井超深井钻井技术[M]. 北京:石油工业出版社,2004:10-15.

    GAO Deli. Deep and ultra-deep well drilling technology under complex geological conditions[M]. Beijing: Petroleum Industry Press, 2004: 10-15.

    [7] 汪海阁,黄洪春,毕文欣,等. 深井超深井油气钻井技术进展与展望[J]. 天然气工业,2021,41(8):163–177.

    WANG Haige, HUANG Hongchun, BI Wenxin, et al. Deep and ultra-deep oil/gas well drilling technologies: progress and prospect[J]. Natural Gas Industry, 2021, 41(8): 163–177.

    [8] 何立成,唐波. 准噶尔盆地超深井钻井技术现状与发展建议[J]. 石油钻探技术,2022,50(5):1–8.

    HE Licheng, TANG Bo. The up to date technologies of ultra-deep well drilling in Junggar Basin and suggestions for further improvements[J]. Petroleum Drilling Techniques, 2022, 50(5): 1–8.

    [9] 高德利,黄文君,刁斌斌,等. 复杂结构井定向钻井技术现状及展望[J]. 前瞻科技,2023,2(2):11–21.

    GAO Deli, HUANG Wenjun, DIAO Binbin, et al. Current status and prospect of directional drilling technologies for complex wells[J]. Science and Technology Foresight, 2023, 2(2): 11–21.

    [10] 高德利. 易斜地层防斜打快钻井理论与技术探讨[J]. 石油钻探技术,2005,33(5):16–19.

    GAO Deli. Discussions on theories and techniques about rapid drilling while preventing deviating in formations tending to deflecting[J]. Petroleum Drilling Techniques, 2005, 33(5): 16–19.

    [11]

    LUBINSKI A. A study of the buckling of rotary drilling string[J]. Drilling and Production Practice, 1950, 50: 178–214.

    [12]

    LUBINSKI A, WOODS H B. Factors affecting the angle of inclination and dog-legging in rotary bore holes[J]. Drilling and Production Practice, 1953: 222-250.

    [13]

    MILLHEIM K, JORDAN S, RITTER C J. Bottom-hole assembly analysis using the finite-element method[J]. Journal of Petroleum Technology, 1978, 30(2): 265–274. doi: 10.2118/6057-PA

    [14]

    HO H S. General formulation of drillstring under large deformation and its use in BHA analysis[R]. SPE 15562, 1986.

    [15]

    HO H S. Prediction of drilling trajectory in directional wells via a new rock-bit interaction model[R]. SPE 16658, 1987.

    [16] 白家祉,苏义脑. 井斜控制理论与实践[M]. 北京:石油工业出版社,1990:66-128.

    BAI Jiazhi, SU Yinao. Theory and practice of well deviation control[M]. Beijing: Petroleum Industry Press, 1990: 66-128.

    [17] 高德利,刘希圣,徐秉业. 井眼轨迹控制[M]. 东营:石油大学出版社,1994:34-152.

    GAO Deli, LIU Xisheng, XU Bingye. Prediction and control of wellbore trajectory[M]. Dongying: Petroleum University Press, 1994: 34-152.

    [18] 狄勤丰,芮子翔,周星,等. 带旋转导向工具的底部钻具组合横向振动特性研究[J]. 石油钻探技术,2021,49(6):8–16.

    DI Qinfeng, RUI Zixiang, ZHOU Xing, et al. Research on lateral vibration characteristics of bottom hole assembly with rotary steerable tool[J]. Petroleum Drilling Techniques, 2021, 49(6): 8–16.

    [19] 张伟,马登宝,杨洪,等. 新型钟摆钻具组合防斜打快技术及在风城011井的应用[J]. 石油天然气学报,2009,31(5):321–323.

    ZHANG Wei, MA Dengbao, YANG Hong, et al. New anti-deviation and fast drilling technology of pendulum assembly and its application in Fengcheng 011 Well[J]. Journal of Oil and Gas Technology, 2009, 31(5): 321–323.

    [20] 胡修俊,祝效华,贾彦杰,等. 刚性满眼钻具组合模态分析研究[J]. 石油机械,2009,37(11):36–38.

    HU Xiujun, ZHU Xiaohua, JIA Yanjie, et al. The modal analysis and research on the rigid packed hole assembly[J]. China Petroleum Machinery, 2009, 37(11): 36–38.

    [21] 狄勤丰,沈双平. 防斜打快技术的研究与发展[J]. 自然杂志,2004,26(2):111–115.

    DI Qinfeng, SHEN Shuangping. Research and development of the vertical and fast drilling technology[J]. Chinese Journal of Nature, 2004, 26(2): 111–115.

    [22] 高德利,高宝奎,谢金稳,等. 钻压防斜技术的实践与理论探讨[J]. 石油钻采工艺,1995,17(6):1–6.

    GAO Deli, GAO Baokui, XIE Jinwen, et al. Researching and practice of deviation control by increasing WOB[J]. Oil Drilling & Production Technology, 1995, 17(6): 1–6.

    [23] 周俊昌,余雄鹰,罗勇,等. 复合钻井防斜打快技术研究与应用[J]. 中国海上油气,2007,19(3):188–191.

    ZHOU Junchang, YU Xiongying, LUO Yong, et al. The research and application of the coupled driven drilling technology[J]. China Offshore Oil and Gas, 2007, 19(3): 188–191.

    [24] 柴麟,张凯,刘宝林,等. 自动垂直钻井工具分类及发展现状[J]. 石油机械,2020,48(1):1–11.

    CHAI Lin, ZHANG Kai, LIU Baolin, et al. Classification and development status of automatic vertical drilling tools[J]. China Petroleum Machinery, 2020, 48(1): 1–11.

    [25] 高德利,刘希圣. 钻头与地层相互作用的新模型[J]. 石油钻采工艺,1989,11(5):23–28.

    GAO Deli, LIU Xisheng. A new model of drill to formation interaction[J]. Oil Drilling & Production Technology, 1989, 11(5): 23–28.

    [26] 黄文君,王舸,高德利. 推靠式旋转导向工具造斜率预测方法[J]. 天然气工业,2021,41(7):101–106.

    HUANG Wenjun, WANG Ge, GAO Deli. A method for predicting the build-up rate of “push-the-bit” rotary steering Tool[J]. Natural Gas Industry, 2021, 41(7): 101–106.

    [27] 王舸,黄文君,高德利. 滑动钻进造斜率预测与分析[J]. 石油钻采工艺,2022,44(2):139–144.

    WANG Ge, HUANG Wenjun, GAO Deli. Prediction and analysis of build-up rate during sliding drilling[J]. Oil Drilling & Production Technology, 2022, 44(2): 139–144.

    [28]

    WANG Ge, HUANG Wenjun, GAO Deli. Real-time control algorithm of well trajectory for push-the-bit rotary steering drilling system[J]. SPE Journal, 2023, 28(5): 2148–2164. doi: 10.2118/214703-PA

    [29] 高德利,黄文君,刘永升,等. 钻柱力学与套管磨损预测若干研究进展[J]. 石油管材与仪器,2020,6(4):1–9.

    GAO Deli, HUANG Wenjun, LIU Yongsheng, et al. Some research advances in drill string mechanics and casing wear prediction for well engineering[J]. Petroleum Tubular Goods & Instruments, 2020, 6(4): 1–9.

    [30]

    FINNIE I, BAILEY J J. An experimental study of drill-string vibration[J]. Journal of Engineering for Industry, 1960, 82(2): 129–135. doi: 10.1115/1.3663020

    [31]

    DUNAYEVSKY V A, ABBASSIAN F, JUDZIS A. Dynamic stability of drillstrings under fluctuating weight on bit[J]. SPE Drilling & Completion, 1993, 8(2): 84–92.

    [32]

    JANSEN J D. Nonlinear dynamics of oilwell drillstrings[D]. Delft: Delft University of Technology, 1993.

    [33]

    MILLHEIM K K, APOSTAL M C. The effect of bottomhole assembly dynamics on the trajectory of a bit[J]. Journal of Petroleum Technology, 1981, 33(12): 2323–2338. doi: 10.2118/9222-PA

    [34]

    ALDRED W D, SHEPPARD M C. Drillstring vibrations: A new generation mechanism and control strategies[R]. SPE 24582, 1992.

    [35]

    CLAYER F, VANDIVER J K, LEE H Y. The effect of surface and downhole boundary conditions on the vibration of drillstrings[R]. SPE 20447, 1990.

    [36]

    BAUMGARTNER T, VAN OORT E. Pure and coupled drill string vibration pattern recognition in high frequency downhole data[R]. SPE 170955, 2014.

    [37]

    LI Yafeng, XUE Qilong, WANG Jin, et al. Pattern recognition of stick-slip vibration in combined signals of drillstring vibration[J]. Measurement, 2022, 204: 112034. doi: 10.1016/j.measurement.2022.112034

    [38]

    OKOLI P, CRUZ VEGA J, SHOR R. Estimating downhole vibration via machine learning techniques using only surface drilling parameters[R]. SPE 195334, 2019.

    [39]

    ALSAIHATI A, ALOTAIBI B. Determining severity of lateral and torsional downhole vibrations while drilling surface holes using three machine learning techniques[J]. SPE Journal, 2022, 27(3): 1493–1503. doi: 10.2118/209575-PA

    [40]

    HEGDE C, MILLWATER H, GRAY K. Classification of drilling stick slip severity using machine learning[J]. Journal of Petroleum Science and Engineering, 2019, 179: 1023–1036. doi: 10.1016/j.petrol.2019.05.021

    [41] 章扬烈,萧载阳. 液压减振器功能的探讨[J]. 石油矿场机械,1997,26(3):21–24.

    ZHANG Yanglie, XIAO Zaiyang. Discussion on the function of hydraulic shock absorber[J]. Oil Field Equipment, 1997, 26(3): 21–24.

    [42] 兰志钢. 双向液压减振器的失效机理及改进建议[J]. 石油钻探技术,2012,40(2):104–108.

    LAN Zhigang. Failure mechanism of two-way hydraulic shock absorbers and improvement measures[J]. Petroleum Drilling Techniques, 2012, 40(2): 104–108.

    [43] 管志川,刘永旺,魏文忠,等. 井下钻柱减振增压装置工作原理及提速效果分析[J]. 石油钻探技术,2012,40(2):8–13. doi: 10.3969/j.issn.1001-0890.2012.02.002

    GUAN Zhichuan, LIU Yongwang, WEI Wenzhong, et al. Downhole drill string absorption & hydraulic supercharging device’ working principle and analysis of speed-increasing effect[J]. Petroleum Drilling Techniques, 2012, 40(2): 8–13. doi: 10.3969/j.issn.1001-0890.2012.02.002

    [44]

    JANSEN J D, VAN DEN STEEN L. Active damping of self-excited torsional vibrations in oil well drillstrings[J]. Journal of Sound and Vibration, 1995, 179(4): 647–668. doi: 10.1006/jsvi.1995.0042

    [45]

    TUCKER W R, WANG C. On the effective control of torsional vibrations in drilling systems[J]. Journal of Sound and Vibration, 1999, 224(1): 101–122. doi: 10.1006/jsvi.1999.2172

    [46]

    NAVARRO-LÓPEZ E M, CORTÉS D. Avoiding harmful oscillations in a drillstring through dynamical analysis[J]. Journal of Sound and Vibration, 2007, 307(1/2): 152–171.

    [47] 高德利,高宝奎,耿瑞平. 钻柱涡动特性分析[J]. 石油钻采工艺,1996,18(6):9–13.

    GAO Deli, GAO Baokui, GENG Ruiping. Analysis of drillstring whirling[J]. Oil Drilling & Production Technology, 1996, 18(6): 9–13.

    [48]

    LIU Yongsheng, GAO Deli. A nonlinear dynamic model for characterizing downhole motions of drill-string in a deviated well[J]. Journal of Natural Gas Science and Engineering, 2017, 38: 466–474. doi: 10.1016/j.jngse.2017.01.006

    [49] 黄文君,石小磊,高德利. 水平钻井振动减阻器参数优化设计[J]. 天然气工业,2023,43(8):108–115.

    HUANG Wenjun, SHI Xiaolei, GAO Deli. Optimal design method of vibration drag reduction parameters in horizontal well drilling[J]. Natural Gas Industry, 2023, 43(8): 108–115.

    [50]

    SHI Xiaolei, HUANG Wenjun, GAO Deli, et al. Extension limit analysis of drillstring with drag reduction oscillators in horizontal drilling[J]. Geoenergy Science and Engineering, 2023, 228: 211996. doi: 10.1016/j.geoen.2023.211996

    [51]

    SHI Xiaolei, HUANG Wenjun, GAO Deli. Mechanical models of drillstrings with drag reduction oscillators and optimal design methods of vibration parameters in horizontal drilling[J]. Geoenergy Science and Engineering, 2023, 224: 211585. doi: 10.1016/j.geoen.2023.211585

    [52] 高德利,黄文君. 井下管柱力学与控制方法若干研究进展[J]. 力学进展,2021,51(3):620–647. doi: 10.6052/1000-0992-21-028

    GAO Deli, HUANG Wenjun. Some research advances in downhole tubular mechanics and control methods[J]. Advances in Mechanics, 2021, 51(3): 620–647. doi: 10.6052/1000-0992-21-028

    [53]

    MEERTENS R, VAN DER HARST T, KLOSS P. Drilling to the limit/long reach oil strike extended reach appraisal/development well tern TA-05[R]. SPE 28833, 1994.

    [54]

    ALFSEN T E, HEGGEN S, BLIKRA H, et al. Pushing the limits for extended reach drilling: new world record from platform Statfjord C, Well C2[J]. SPE Drilling & Completion, 1995, 10(2): 71–76.

    [55]

    RODMAN D W, SWIETLIK G. Extended reach drilling limitations: A shared solution[R]. SPE 38466, 1997.

    [56]

    MEADER T, ALLEN F, RILEY G. To the limit and beyond-the secret of world-class extended-reach drilling performance at Wytch Farm[R]. SPE 59204, 2000.

    [57]

    GAO Deli, TAN Chengjin, TANG Haixiong. Limit analysis of extended reach drilling in South China Sea[J]. Petroleum Science, 2009, 6(2): 166–171. doi: 10.1007/s12182-009-0026-8

    [58] 汪志明,郭晓乐. 大位移井水力延伸极限研究[J]. 钻采工艺,2008,31(4):1–3. doi: 10.3969/j.issn.1006-768X.2008.04.001

    WANG Zhiming, GUO Xiaole. Hydraulic extended limitation of extended-reach well[J]. Drilling & Production Technology, 2008, 31(4): 1–3. doi: 10.3969/j.issn.1006-768X.2008.04.001

    [59] 闫铁,张凤民,刘维凯,等. 大位移井钻井极限延伸能力的研究[J]. 钻采工艺,2010,33(1):4–7. doi: 10.3969/j.issn.1006-768X.2010.01.002

    YAN Tie, ZHANG Fengmin, LIU Weikai, et al. Mechanical analysis on the limit extended capacity for an extended reach well[J]. Drilling & Production Technology, 2010, 33(1): 4–7. doi: 10.3969/j.issn.1006-768X.2010.01.002

    [60]

    LONG T P, MCCORMICK J E, FRILOT M A. Inaccessible drilling targets and completions operation made possible by the alleviation of excessive torque and drag[R]. SPE 125991, 2009.

    [61]

    SCHAMP J H, ESTES B L, KELLER S R. Torque reduction techniques in ERD wells[R]. SPE 98969, 2006.

    [62]

    NEWMAN K, BURNETT T, PURSELL J, et al. Modeling the affect of a downhole vibrator[R]. SPE 121752, 2009.

    [63]

    SOLA K I, LUND B. New downhole tool for coiled tubing extended reach[R]. SPE 60701, 2000.

    [64] 张辉,于文涛,陈忠帅,等. 水力脉冲轴向振荡减阻工具研制[J]. 石油矿场机械,2014,43(7):73–76.

    ZHANG Hui, YU Wentao, CHEN Zhongshuai, et al. Development of hydropulse axial-oscillation friction-reduce Tool[J]. Oil Field Equipment, 2014, 43(7): 73–76.

    [65] 王杰,夏成宇,冯定,等. 新型涡轮驱动水力振荡器设计与实验研究[J]. 工程设计学报,2016,23(4):391–395. doi: 10.3785/j.issn.1006-754X.2016.04.015

    WANG Jie, XIA Chengyu, FENG Ding, et al. Design and experimental study on a new type of turbine driven hydraulic oscillator[J]. Journal of Engineering Design, 2016, 23(4): 391–395. doi: 10.3785/j.issn.1006-754X.2016.04.015

    [66] 高德利,黄文君,李鑫. 大位移井钻井延伸极限研究与工程设计方法[J]. 石油钻探技术,2019,47(3):1–8. doi: 10.11911/syztjs.2019069

    GAO Deli, HUANG Wenjun, LI Xin. Research on extension limits and engineering design methods for extended reach drilling[J]. Petroleum Drilling Techniques, 2019, 47(3): 1–8. doi: 10.11911/syztjs.2019069

    [67]

    HUANG Wenjun, GAO Deli, LIU Yinghua. A study of mechanical extending limits for three-section directional wells[J]. Journal of Natural Gas Science and Engineering, 2018, 54: 163–174. doi: 10.1016/j.jngse.2018.03.031

    [68]

    ZHAO Jun, HUANG Wenjun, GAO Deli. Research on dynamic prediction of tubular extension limit and operation risk in extended-reach drilling[J]. Journal of Natural Gas Science and Engineering, 2022, 107: 104542. doi: 10.1016/j.jngse.2022.104542

    [69]

    HUANG Wenjun, GAO Deli. Analysis of drilling difficulty of extended-reach wells based on drilling limit theory[J]. Petroleum Science, 2022, 19(3): 1099–1109. doi: 10.1016/j.petsci.2021.12.030

    [70] 高德利. 油气井管柱力学与工程[M]. 东营:中国石油大学出版社,2006:121-181.

    GAO Deli. Down-hole tubular mechanics and its applications[M]. Dongying: China University of Petroleum Press, 2006: 121-181.

    [71]

    CHEN Zhanfeng, ZHU Weiping, DI Qinfeng, et al. Numerical and theoretical analysis of burst pressures for casings with eccentric wear[J]. Journal of Petroleum Science and Engineering, 2016, 145: 585–591. doi: 10.1016/j.petrol.2016.05.024

    [72] 刘奎,高德利,王宴滨,等. 局部载荷对页岩气井套管变形的影响[J]. 天然气工业,2016,36(11):76–82. doi: 10.3787/j.issn.1000-0976.2016.11.010

    LIU Kui, GAO Deli, WANG Yanbin, et al. Effects of local load on shale gas well casing deformation[J]. Natural Gas Industry, 2016, 36(11): 76–82. doi: 10.3787/j.issn.1000-0976.2016.11.010

    [73]

    LIN Tiejun, ZHANG Qiang, LIAN Zhanghua, et al. Evaluation of casing integrity defects considering wear and corrosion: application to casing design[J]. Journal of Natural Gas Science and Engineering, 2016, 29: 440–452. doi: 10.1016/j.jngse.2016.01.029

    [74]

    GAO Deli, SUN Lianzhong, LIAN Jihong. Prediction of casing wear in extended-reach drilling[J]. Petroleum Science, 2010, 7(4): 494–501. doi: 10.1007/s12182-001-0098-6

    [75]

    WU J, ZHANG M G. Casing burst strength after casing wear[R]. SPE 94304, 2005.

    [76]

    SONG J S, BOWEN J, KLEMENTICH F. The internal pressure capacity of crescent-shaped wear casing[R]. SPE 23902, 1992.

    [77] 王小增,窦益华,杨久红. 偏心磨损套管应力分布的双极坐标解答[J]. 石油钻探技术,2006,34(2):18–21. doi: 10.3969/j.issn.1001-0890.2006.02.005

    WANG Xiaozeng, DOU Yihua, YANG Jiuhong. An analysis for the stress of eccentric worn casing with bipolar coordinates[J]. Petroleum Drilling Techniques, 2006, 34(2): 18–21. doi: 10.3969/j.issn.1001-0890.2006.02.005

    [78] 王建军,赵楠,张赟新,等. 井下油套管管柱修复技术研究[J]. 石油管材与仪器,2022,8(6):15–20.

    WANG Jianjun, ZHAO Nan, ZHANG Yunxin, et al. Comparison of repairing technologies for tubing and casing strings in oil and gas well[J]. Petroleum Tubular Goods & Instruments, 2022, 8(6): 15–20.

    [79] 田启忠,温盛魁,伊伟锴,等. 长井段套管破损补贴修复技术研究与应用[J]. 石油机械,2015,43(11):88–91.

    TIAN Qizhong, WEN Shengkui, YI Weikai, et al. Patching techniques for reparation of damaged casing in long well interval[J]. China Petroleum Machinery, 2015, 43(11): 88–91.

    [80] 徐太保. 机械切割在南海西部气田修井作业中的应用[J]. 石油管材与仪器,2020,6(6):83–85.

    XU Taibao. Application of mechanical cutting in workover operation in western gas field of South China Sea[J]. Petroleum Tubular Goods & Instruments, 2020, 6(6): 83–85.

    [81] 潘一,温峥,杨双春,等. 国内外堵漏剂的研究进展[J]. 油田化学,2015,32(4):628–632.

    PAN Yi, WEN Zheng, YANG Shuangchun, et al. Research progress of plugging agent at domestic and foreign[J]. Oilfield Chemistry, 2015, 32(4): 628–632.

    [82]

    HUANG Wenjun, GAO Deli, LIU Yinghua. Short-term and long-term mechanical models of wellbores considering cement consolidation and formation creep[J]. SPE Journal, 2019, 24(5): 2064–2082. doi: 10.2118/195573-PA

    [83]

    HUANG Wenjun, GAO Deli. A theoretical study of the critical external pressure for casing collapse[J]. Journal of Natural Gas Science and Engineering, 2015, 27(Part 1): 290–297.

    [84] 黄文君,张星坤,高德利. 复合磨损模式下的套管失效风险预测方法:以ϕ193.68 mm×12.7 mm 套管为例[J]. 天然气工业,2022,42(7):85–94.

    HUANG Wenjun, ZHANG Xingkun, GAO Deli. Prediction method of casing failure risk under compound wear mode: a case study on ϕ193.68 mm×12.7 mm casing[J]. Natural Gas Industry, 2022, 42(7): 85–94.

    [85] 黄文君,张星坤,高德利,等. 复合模式下套管磨损形状与深度计算模型[J]. 石油学报,2021,42(10):1373–1381. doi: 10.7623/syxb202110011

    HUANG Wenjun, ZHANG Xingkun, GAO Deli, et al. Casing wear shape and depth calculation model in a compound mode[J]. Acta Petrolei Sinica, 2021, 42(10): 1373–1381. doi: 10.7623/syxb202110011

    [86]

    ZHANG Xingkun, HUANG Wenjun, GAO Deli. Prediction model of casing wear shape and residual strength under compound modes[J]. SPE Journal, 2022, 27(4): 2183–2207. doi: 10.2118/209612-PA

    [87]

    WANG Jieli, HUANG Wenjun, GAO Deli. Prediction models of burst strength degradation for casing with considerations of both wear and corrosion[J]. Petroleum Science, 2024, 21(1): 458–474. doi: 10.1016/j.petsci.2023.08.014

    [88] 黄文君,王捷力,高德利. 磨损–腐蚀耦合效应下超深井套管失效机理与剩余强度预测[C]//中国深层超深层油气勘探开发关键技术与装备交流研讨会论文集. 北京:中国石化出版社,2023:481-486.

    HUANG Wenjun, WANG Jieli, GAO Deli. Failure mechanism and residual strength prediction of casing in ultra-deep wells under the coupling effect of wear and corrosion[C]//Proceedings of the Symposium on Key Technologies and Equipment Exchange for Deep and Ultra-deep Oil and Gas Exploration and Development in China. Beijing: China Petrochemical Press, 2023: 481-486.

  • 期刊类型引用(12)

    1. 刘威. 长水平段水平井钻井技术难点及改进措施. 西部探矿工程. 2024(07): 74-77 . 百度学术
    2. 汪海阁,常龙,卓鲁斌,席传明,欧阳勇. 中国石油陆相页岩油钻井技术现状与发展建议. 新疆石油天然气. 2024(03): 1-14 . 百度学术
    3. 秦春,刘纯仁,李玉枝,王治国,陈文可. 苏北断块页岩油水平井钻井提速关键技术. 石油钻探技术. 2024(06): 30-36 . 本站查看
    4. 蔚远江,王红岩,刘德勋,赵群,李晓波,武瑾,夏遵义. 中国陆相页岩油示范区发展现状及建设可行性评价指标体系. 地球科学. 2023(01): 191-205 . 百度学术
    5. 郭婷婷. 泥页岩易垮塌油藏钻井提速工艺技术研究. 西部探矿工程. 2023(10): 73-75+79 . 百度学术
    6. 张文平,许争鸣,吕泽昊,赵雯. 深层页岩欠平衡钻井气液固三相瞬态流动传热模型研究. 石油钻探技术. 2023(05): 96-105 . 本站查看
    7. 李兵. 海拉尔地区钻井提速设计优化. 山东石油化工学院学报. 2023(03): 51-55 . 百度学术
    8. 田启忠,戴荣东,王继强,李成龙,黄豪彩. 胜利油田页岩油丛式井提速提效钻井技术. 石油钻采工艺. 2023(04): 404-409 . 百度学术
    9. 潘永强,张坤,于兴东,王洪月,陈赓,李浩东. 松辽盆地致密油水平井提速技术研究与应用. 石油工业技术监督. 2023(12): 33-38 . 百度学术
    10. 倪维军,杨国昊,翟喜桐,马龙飞. 延安气田富县区域下古生界水平井优快钻井技术. 石油工业技术监督. 2023(12): 44-48 . 百度学术
    11. 姜文亚,于浩阳,陈长伟,宋舜尧,高莉津,王晓东,刘广华,冯建园. 陆相页岩油规模效益建产探索与实践. 现代工业经济和信息化. 2023(11): 249-252 . 百度学术
    12. 迟建功. 大庆古龙页岩油水平井钻井技术. 石油钻探技术. 2023(06): 12-17 . 本站查看

    其他类型引用(1)

图(4)
计量
  • 文章访问数:  470
  • HTML全文浏览量:  194
  • PDF下载量:  260
  • 被引次数: 13
出版历程
  • 收稿日期:  2024-01-19
  • 修回日期:  2024-02-25
  • 网络出版日期:  2024-03-25
  • 刊出日期:  2024-04-02

目录

/

返回文章
返回