常压页岩气立体开发特征及缝网干扰规律研究

张莉娜, 任建华, 胡春锋

张莉娜,任建华,胡春锋. 常压页岩气立体开发特征及缝网干扰规律研究[J]. 石油钻探技术,2023, 51(5):149-155. DOI: 10.11911/syztjs.2023090
引用本文: 张莉娜,任建华,胡春锋. 常压页岩气立体开发特征及缝网干扰规律研究[J]. 石油钻探技术,2023, 51(5):149-155. DOI: 10.11911/syztjs.2023090
ZHANG Lina, REN Jianhua, HU Chunfeng. Three-dimensional development characteristics and fracture network interference of atmospheric shale gas reservoir [J]. Petroleum Drilling Techniques,2023, 51(5):149-155. DOI: 10.11911/syztjs.2023090
Citation: ZHANG Lina, REN Jianhua, HU Chunfeng. Three-dimensional development characteristics and fracture network interference of atmospheric shale gas reservoir [J]. Petroleum Drilling Techniques,2023, 51(5):149-155. DOI: 10.11911/syztjs.2023090

常压页岩气立体开发特征及缝网干扰规律研究

基金项目: 中国石化“十条龙”重大科技攻关项目“南川复杂构造带页岩气勘探开发关键技术研究”(编号:P19017-3)、中国石化科技部项目“常压页岩气效益开发技术政策优化研究”(编号:P21087-4)联合资助
详细信息
    作者简介:

    张莉娜(1989—),女,山东滨州人,2012年毕业于中国石油大学胜利学院石油工程专业,2015年获中国石油大学(华东)油气田开发工程专业硕士学位,助理研究员,主要从事非常规油气藏动态分析、数值模拟等工作。E-mail:1273323406@qq.com

  • 中图分类号: TE349

Three-Dimensional Development Characteristics and Fracture Network Interference of Atmospheric Shale Gas Reservoir

  • 摘要:

    为明确页岩气藏立体开发井的压裂施工特征和生产规律,以南川常压页岩气藏为研究对象,分析了压裂干扰现象、缝网沟通机理以及对老井生产的影响。分析结果表明,立体开发井施工压力纵向上与地质静态参数具有一致性,平面上与井距正相关,与井间采出程度负相关;受储层物性和保存条件的影响,下部气层井产能优于中部气层井,优于上部气层井;同开发层系加密井压裂时,根据老井套压变化特征,可将新老井缝网干扰划分为高导流缝间沟通、高导流缝与低导流缝的沟通和低导流缝间沟通等多种方式。结合试井解释结果,明确压裂干扰对同开发层系试采井EUR、典型曲线的影响分为4类,对不同开发层系井日产水平影响较小。其中,当空间距离小于200 m的不同层系页岩气井进行拉链压裂时,新井施工压力会大幅升高。研究结果为常压页岩气田方案部署、压裂设计和压裂过程中动态优化调整提供了理论依据。

    Abstract:

    In order to clarify the characteristics of fracturing operation and the production dynamics of three-dimensional developing wells in shale gas reservoir, the Nanchuan atmospheric shale gas reservoir served as the subject for analyzing fracture interference phenomena, fracture network connectivity mechanisms, and their impact on the production of old wells. The statistics showed that the fracturing pressure of three-dimensional developing wells aligned vertically with geological static parameters, and exhibited a positive correlation with well spacing horizontally, while showing a negative correlation with the production degree. Affected by the reservoir’s physical properties and preservation conditions, wells in the lower gas layer exhibited better productivity compared to those in the middle and upper gas layers. When infill wells in the same development layer were fractured, based on the characteristics of casing pressure changes in old wells, the fracture network interference between old and new wells could be classified into high-conductivity fracture connection, high-low conductivity fracture connection, and low- conductivity fracture connection. Based on the interpretation results of well tests, the influence on estimated ultimate recovery (EUR) and typical curves of old wells caused by fracturing interference were classified into 4 types, while minimal impact were caused on the daily production levels of wells in different development layers. However, when zipper fracturing was conducted on shale gas wells in different layers with a spatial distance of less than 200 m, the fracturing pressure of new wells significantly increased. These research results have provided a theoretical basis for the plan deployment, fracturing design, and dynamic optimization and adjustment during the fracturing process in atmospheric shale gas fields.

  • 图  1   加密井与老井破裂压力梯度差值随井距变化散点图

    Figure  1.   Scatter plot of fracture pressure gradient difference of infill and old wells with well spacing

    图  2   加密井与老井破裂压力梯度差值随采出程度变化散点图

    Figure  2.   Scatter plot of fracture pressure gradient difference of infill and old wells featuring the recovery degree

    图  3   不同类型立体开发井不稳态产能拟合曲线

    Figure  3.   Unsteady productivity curves of different three-dimensional development wells

    图  4   加密前后老井累计产气量曲线

    Figure  4.   Cumulative gas production curve of old wells before and after infilling

    图  5   加密井累计产气量曲线

    Figure  5.   Cumulative gas production curve of infill well

    表  1   不同加密类型下的施工压力对比

    Table  1   Fracturing pressure comparison of different infill types

    加密类型老井间距/m加密前老井累计
    产气量/108m3
    井间采出程度,%破裂压力/MPa破裂压力梯度/
    (MPa∙(100 m)−1
    下部气层老井350~55057.1~86.41.9~3.0
    大井距加密450~5500.958.056.8~85.12.0~3.0
    大井距加密450~5501.064.554.2~81.31.8~2.9
    小井距加密350~4500.754.751.8~76.61.8~2.8
    小井距加密350~4500.862.546.3~65.51.6~2.5
    下载: 导出CSV
  • [1]

    KURTOGLU B, SALMAN A. How to utilize hydraulic fracture interference to improve unconventional development[R]. SPE 177953, 2015.

    [2]

    MALPANI R, SINHA S, CHARRY L, et al. Improving hydrocarbon recovery of horizontal shale wells through refracturing[R]. SPE 175920, 2015.

    [3] 端祥刚,吴建发,张晓伟,等. 四川盆地海相页岩气提高采收率研究进展与关键问题[J]. 石油学报,2022,43(8):1185–1200.

    DUAN Xianggang, WU Jianfa, ZHANG Xiaowei, et al. Progress and key issues in the study of enhanced recovery of marine shale gas in Sichuan Basin[J]. Acta Petrolei Sinica, 2022, 43(8): 1185–1200.

    [4] 魏绍蕾,黄学斌,李军,等. 基于概率法的页岩气单井最终可采量评估: 以焦石坝页岩气田加密井为例[J]. 石油实验地质,2021,43(1):161–168. doi: 10.11781/sysydz202101161

    WEI Shaolei, HUANG Xuebin, LI Jun, et al. Shale gas EUR estimation based on a probability method: a case study of infill wells in Jiaoshiba shale gas field[J]. Petroleum Geology and Experiment, 2021, 43(1): 161–168. doi: 10.11781/sysydz202101161

    [5] 高健. 四川盆地威远区块页岩气立体开发技术与对策: 以威202井区A平台为例[J]. 天然气工业,2022,42(2):93–99. doi: 10.3787/j.issn.1000-0976.2022.02.010

    GAO Jian. Three-dimensional development technologies and countermeasures for shale gas in Weiyuan Block of the Sichuan Basin: a case study on Wei 202A platform[J]. Natural Gas Industry, 2022, 42(2): 93–99. doi: 10.3787/j.issn.1000-0976.2022.02.010

    [6] 余凯,鲜成钢,文恒,等. 昭通国家级示范区浅层页岩气立体开发探索: 以海坝背斜南翼YS203H1平台为例[J]. 地球科学,2023,48(1):252–266.

    YU Kai, XIAN Chenggang, WEN Heng, et al. Stereoscopic development exploration of shallow shale gas in Zhaotong National Shale Gas Demonstration Area: case study of YS203H1 pad of Haiba anticline southern limb[J]. Earth Science, 2023, 48(1): 252–266.

    [7] 张东清,万云强,张文平,等. 涪陵页岩气田立体开发优快钻井技术[J]. 石油钻探技术,2023,51(2):16–21. doi: 10.11911/syztjs.2022097

    ZHANG Dongqing, WAN Yunqiang, ZHANG Wenping, et al. Optimal and fast drilling technologies for stereoscopic development of the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2023, 51(2): 16–21. doi: 10.11911/syztjs.2022097

    [8] 何乐,袁灿明,龚蔚. 页岩气井间压窜影响因素分析和防窜对策[J]. 油气藏评价与开发,2020,10(5):63–69. doi: 10.13809/j.cnki.cn32-1825/te.2020.05.009

    HE Le, YUAN Canming, GONG Wei. Influencing factors and preventing measures of intra-well frac hit in shale gas[J]. Reservoir Evaluation and Development, 2020, 10(5): 63–69. doi: 10.13809/j.cnki.cn32-1825/te.2020.05.009

    [9] 袁建强. 济阳坳陷页岩油多层立体开发关键工程技术[J]. 石油钻探技术,2023,51(1):1–8. doi: 10.11911/syztjs.2023001

    YUAN Jianqiang. Key engineering technologies for three-dimensional development of multiple formations of shale oil in Jiyang Depression[J]. Petroleum Drilling Techniques, 2023, 51(1): 1–8. doi: 10.11911/syztjs.2023001

    [10] 刘方圆. 定量分析邻井压裂对页岩气井生产的影响[J]. 长江大学学报(自然科学版),2018,15(11):60–63.

    LIU Fangyuan. The influence of quantitative analysis of adjacent fracturing well on the production of shale gas wells[J]. Journal of Yangtze University(Natural Science Edition), 2018, 15(11): 60–63.

    [11]

    DETRING J P, GREALY M. Using microseismicity to understand subsurface fracture systems and to optimize completions: Eagle Ford Shale, TX[R]. URTEC-1922814-MS, 2014.

    [12]

    EJOFODOMI E A, BAIHLY J D, SILVA F. Using a calibrated 3D fracturing simulator to optimize completions of future wells in the Eagle Ford Shale[R]. URTEC-2172668-MS, 2015.

    [13] 郭旭洋,金衍,黄雷,等. 页岩油气藏水平井井间干扰研究现状和讨论[J]. 石油钻采工艺,2021,43(3):348–367. doi: 10.13639/j.odpt.2021.03.013

    GUO Xuyang, JIN Yan, HUANG Lei, et al. Research status and discussion of horizontal well interference in shale oil and gas reservoirs[J]. Oil Drilling & Production Technology, 2021, 43(3): 348–367. doi: 10.13639/j.odpt.2021.03.013

    [14]

    ATAEI A, MOTAEI E, YAZDI M E, et al. Rate transient analysis RTA and its application for well connectivity analysis: an integrated production driven reservoir characterization and a case study[R]. SPE 192046, 2018.

    [15]

    FANG Sidong, XIONG Hao, WANG Baohua, et al. The influence of infill well-caused fracture interference on shale gas production and recovery: A comprehensive numerical simulation study[R]. URTEC-208382-MS, 2021.

    [16] 王军磊,贾爱林,位云生,等. 基于复杂缝网模拟的页岩气水平井立体开发效果评价新方法: 以四川盆地南部地区龙马溪组页岩气为例[J]. 天然气工业,2022,42(8):175–189. doi: 10.3787/j.issn.1000-0976.2022.08.014

    WANG Junlei, JIA Ailin, WEI Yunsheng, et al. A new method for evaluating tridimensional development effect of shale gas horizontal wells based on complex fracture network simulation: a case study of Longmaxi Formation shale gas in the southern Sichuan Basin[J]. Natural Gas Industry, 2022, 42(8): 175–189. doi: 10.3787/j.issn.1000-0976.2022.08.014

    [17] 周德华,戴城,方思冬,等. 基于嵌入式离散裂缝模型的页岩气水平井立体开发优化设计[J]. 油气地质与采收率,2022,29(3):113–120. doi: 10.13673/j.cnki.cn37-1359/te.202108037

    ZHOU Dehua, DAI Cheng, FANG Sidong, et al. Optimization of 3D development in shale gas horizontal wells based on embedded discrete fracture model[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(3): 113–120. doi: 10.13673/j.cnki.cn37-1359/te.202108037

    [18] 孙海成,汤达祯,蒋廷学. 页岩气储层裂缝系统影响产量的数值模拟研究[J]. 石油钻探技术,2011,39(5):63–67. doi: 10.3969/j.issn.1001-0890.2011.05.014

    SUN Haicheng, TANG Dazhen, JIANG Tingxue. Numerical simulation of the impact of fracture system on well production in shale formation[J]. Petroleum Drilling Techniques, 2011, 39(5): 63–67. doi: 10.3969/j.issn.1001-0890.2011.05.014

    [19] 高玉巧,蔡潇,何希鹏,等. 渝东南盆缘转换带五峰组—龙马溪组页岩压力体系与有机孔发育关系[J]. 吉林大学学报(地球科学版),2020,50(2):662–674. doi: 10.13278/j.cnki.jjuese.20190130

    GAO Yuqiao, CAI Xiao, HE Xipeng, et al. Relationship between shale pressure system and organic pore development of Wufeng-Longmaxi Formation in marginnal conversion zone of southeastern Chongqing Basin[J]. Journal of Jilin University(Earth Science Edition), 2020, 50(2): 662–674. doi: 10.13278/j.cnki.jjuese.20190130

    [20] 何希鹏,何贵松,高玉巧,等. 常压页岩气勘探开发关键技术进展及攻关方向[J]. 天然气工业,2023,43(6):1–14.

    HE Xipeng, HE Guisong, GAO Yuqiao, et al. Progress in and research direction of key technologies for normal-pressure shale gas exploration and development[J]. Natural Gas Industry, 2023, 43(6): 1–14.

    [21] 何希鹏. 四川盆地东部页岩气甜点评价体系与富集高产影响因素[J]. 天然气工业,2021,41(1):59–71. doi: 10.3787/j.issn.1000-0976.2021.01.005

    HE Xipeng. Sweet spot evaluation system and enrichment and high yield influential factors of shale gas in Nanchuan area of eastern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(1): 59–71. doi: 10.3787/j.issn.1000-0976.2021.01.005

    [22] 房大志,钱劲,梅俊伟,等. 南川区块平桥背斜页岩气开发层系划分及合理井距优化研究[J]. 油气藏评价与开发,2021,11(2):212–218. doi: 10.13809/j.cnki.cn32-1825/te.2021.02.010

    FANG Dazhi, QIAN Jin, MEI Junwei, et al. Layer series division for development of shale gas of Pingqiao anticline in Nanchuan Block and reasonable well spacing optimization[J]. Reservoir Evaluation and Development, 2021, 11(2): 212–218. doi: 10.13809/j.cnki.cn32-1825/te.2021.02.010

    [23] 陈作,李双明,陈赞,等. 深层页岩气水力裂缝起裂与扩展试验及压裂优化设计[J]. 石油钻探技术,2020,48(3):70–76. doi: 10.11911/syztjs.2020060

    CHEN Zuo, LI Shuangming, CHEN Zan, et al. Hydraulic fracture initiation and extending tests in deep shale gas formations and fracturing design optimization[J]. Petroleum Drilling Techniques, 2020, 48(3): 70–76. doi: 10.11911/syztjs.2020060

    [24] 李传亮,庞彦明,周永炳,等. 地层产生体积压裂缝网的条件分析[J]. 断块油气田,2022,29(1):101–106.

    LI Chuanliang, PANG Yanming, ZHOU Yongbing, et al. Analysis on forming conditions of fracture network in volume fracturing of formation[J]. Fault-Block Oil & Gas Field, 2022, 29(1): 101–106.

    [25] 吕斐, 缪新婷, 周昌玉. 结构内局部高应力区对裂纹扩展路径的影响[C]//压力容器先进技术: 第九届全国压力容器学术会议论文集. 合肥: 合肥工业大学出版社, 2017: 231−239.

    LYU Fei, MIU Xinting, ZHOU Changyu. Effect of local high stress zone on crack propagation path[C]//Advanced Technology of Pressure vessel-Proceedings of the 9th National Pressure Vessel Academic Conference and Pressure Vessel Branch Conference of Chinese Mechanical Engineering Society. Hefei: Hefei University of Technology Publishing House, 2017: 231−239.

    [26] 周博成,熊炜,赖建林,等. 武隆区块常压页岩气藏低成本压裂技术[J]. 石油钻探技术,2022,50(3):80–85.

    ZHOU Bocheng, XIONG Wei, LAI Jianlin, et al. Low-cost fracturing technology in normal-pressure shale gas reservoirs in Wulong Block[J]. Petroleum Drilling Techniques, 2022, 50(3): 80–85.

    [27] 盛广龙,黄罗义,赵辉,等. 页岩气藏压裂缝网扩展流动一体化模拟技术[J]. 西南石油大学学报(自然科学版),2021,43(5):84–96.

    SHENG Guanglong, HUANG Luoyi, ZHAO Hui, et al. Integrated simulation approach for fracture network propagation and gas flow in shale gas reservoirs[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(5): 84–96.

    [28] 王怒涛, 黄炳光. 实用气藏动态分析方法[M]. 北京: 石油工业出版社, 2011: 186-192.

    WANG Nutao, HUANG Bingguang. Applied gas reservoir dynamic analysis method[M]. Beijing: Petroleum Industry Press, 2011: 186-192.

    [29] 赵光宇. 页岩气藏压裂动用程度及气体流动模拟研究[J]. 石油钻探技术,2018,46(4):96–103. doi: 10.11911/syztjs.2018058

    ZHAO Guangyu. Study of a simulation of degree of fracturing production and resulting gas flow in shale gas reservoirs[J]. Petroleum Drilling Techniques, 2018, 46(4): 96–103. doi: 10.11911/syztjs.2018058

    [30] 刘建彬. 页岩气压裂对正钻井施工的技术研究[J]. 中国石油和化工标准与质量,2020,40(2):239–240. doi: 10.3969/j.issn.1673-4076.2020.02.117

    LIU Jianbin. Research on shale gas fracturing technology for normal drilling construction[J]. China Petroleum and Chemical Standard and Quality, 2020, 40(2): 239–240. doi: 10.3969/j.issn.1673-4076.2020.02.117

    [31] 唐海,张铠漓,唐瑞雪,等. 层间干扰实质与再认识[J]. 西南石油大学学报(自然科学版),2022,44(5):113–124.

    TANG Hai, ZHANG Kaili, TANG Ruixue, et al. The essence and re-recognition of interlayer interference[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(5): 113–124.

图(5)  /  表(1)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  52
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-21
  • 修回日期:  2023-08-22
  • 网络出版日期:  2023-08-25
  • 刊出日期:  2023-10-30

目录

    /

    返回文章
    返回