沁南区域煤层气水平井瓜尔胶钻井液技术

耿学礼, 郑晓斌, 苏延辉, 敬倩, 史斌, 李建

耿学礼,郑晓斌,苏延辉,等. 沁南区域煤层气水平井瓜尔胶钻井液技术[J]. 石油钻探技术,2023, 51(1):34-39. DOI: 10.11911/syztjs.2022038
引用本文: 耿学礼,郑晓斌,苏延辉,等. 沁南区域煤层气水平井瓜尔胶钻井液技术[J]. 石油钻探技术,2023, 51(1):34-39. DOI: 10.11911/syztjs.2022038
GENG Xueli, ZHENG Xiaobin, SU Yanhui, et al. Guar gum drilling fluid technology for coalbed methane horizontal wells in Qinnan Area [J]. Petroleum Drilling Techniques,2023, 51(1):34-39. DOI: 10.11911/syztjs.2022038
Citation: GENG Xueli, ZHENG Xiaobin, SU Yanhui, et al. Guar gum drilling fluid technology for coalbed methane horizontal wells in Qinnan Area [J]. Petroleum Drilling Techniques,2023, 51(1):34-39. DOI: 10.11911/syztjs.2022038

沁南区域煤层气水平井瓜尔胶钻井液技术

基金项目: 国家科技重大专项 “大型油气田及煤层气开发”(编号:2016ZX05025)部分研究内容
详细信息
    作者简介:

    耿学礼(1983—)男,河北沧州人,2007年毕业于长江大学化学工程与工艺专业,高级工程师,主要从事钻完井液及储层保护技术研究。E-mail:gengxl2@cnooc.com.cn

  • 中图分类号: TE254+.6

Guar Gum Drilling Fluid Technology for Coalbed Methane Horizontal Wells in Qinnan Area

  • 摘要:

    针对沁南区域15号煤层水平井钻井采用清洁盐水和常规聚合物钻井液施工时的井壁坍塌和储层伤害等问题,在分析储层特征及钻井技术难点的基础上,研发了瓜尔胶钻井液和生物酶破胶液。通过优化瓜尔胶加量和评价瓜尔胶的耐盐性能,并复配其他处理剂,形成了瓜尔胶钻井液;通过优选生物酶种类、优化生物酶和助排剂的加量,形成了生物酶破胶液。室内试验表明,瓜尔胶钻井液具有良好的流变性和耐盐性能,可大幅提高煤岩抗压强度,在低温下易破胶,破胶后残渣小于300 mg/L,煤岩的渗透率恢复率达85%以上。沁南区域煤层气水平井应用瓜尔胶钻井液后,井壁稳定性良好;配合生物酶破胶液可以实现低温破胶,且单井日产能提高15%以上,具有较好的储层保护效果。研究结果表明,瓜尔胶钻井液可实现煤层长水平段钻井的顺利施工,完钻后可低温破胶,为易塌煤层气水平井钻井施工提供了一种新的储层保护方法。

    Abstract:

    Wellbore collapse and reservoir damage occurred when clean brine and conventional polymer drilling fluids were used in drilling horizontal wells of No. 15 coal seam in Qinnan Area. In view of this, according to reservoir characteristics and challenges encountered during drilling, a guar gum drilling fluid and a bio-enzyme gel breaking fluid were developed. Specifically, the guar gum drilling fluid was formed by optimizing the dosage of guar gum, evaluating the salt tolerance, and integrating with other treatment agents. And the bio-enzyme gel breaking fluid was produced by optimizing types and dosage of bio-enzyme and cleanup additive. The laboratory test showed that the guar gum drilling fluid had good rheological and salt tolerance properties. It could greatly improve the compressive strength of coal and rock, and easily achieve gel breaking at low temperatures, with residues after breaking less than 300 mg/L.The permeability recovery rate of coal rock was more than 85%. In terms of the application of the guar gum drilling fluid in coalbed methane (CBM) horizontal wells in Qinnan Area, the fluid showed positive wellbore stability. In addition, it not only achieved gel breaking at low temperatures but also improved the daily productivity of a single well by more than 15% after integrating with the bio-enzyme gel breaking fluid, which indicated a favorable reservoir protection effect. The research shows that the guar gum drilling fluid can ensure smooth drilling of long horizontal sections in coal seams and achieve gel breaking at low temperatures after drilling, which provides a new reservoir protection method for drilling horizontal wells in fragile coal seams.

  • 图  1   清水加入不同量瓜尔胶后的漏斗黏度

    Figure  1.   Funnel viscosity at different guar gum dosages

    图  2   瓜尔胶钻井液加入不同量KCl后的密度和漏斗黏度

    Figure  2.   Density and funnel viscosity of guar gum drilling fluid after adding different amounts of KCl

    图  3   不同钻井液对煤岩抗压强度的影响

    Figure  3.   Influence of different drilling fluids on compressive strength of coal rock

    表  1   不同种类破胶剂的破胶效果

    Table  1   Gel breaking effect of different breakers

    破胶剂类型破胶剂及加量表观黏度/(mPa·s)残渣含量/(mg·L−1
    空白样49.0未破胶
    氧化破胶剂0.30%过硫酸铵21.0未破胶
    0.70%过硫酸铵21.0未破胶
    0.10%次氯酸钙4.5未破胶
    0.20%次氯酸钙3.0590
    复合生物酶0.02%Ⅰ型生物酶破胶剂15.0未破胶
    0.05%Ⅰ型生物酶破胶剂4.5115
    0.08%Ⅰ型生物酶破胶剂4.5108
    0.10%Ⅰ型生物酶破胶剂3.0120
    单一生物酶0.02%Ⅱ型生物酶破胶剂6.0未破胶
    0.05%Ⅱ型生物酶破胶剂4.5240
    0.08%Ⅱ型生物酶破胶剂3.0251
    下载: 导出CSV

    表  2   破胶液加入不同量助排剂后的表面张力

    Table  2   Surface tension of gel breaking fluid at different cleanup additive dosages

    助排剂加量,%表面张力/(mN·m−1降低率,%
    065
    0.13546.15
    0.22856.92
    0.31872.31
    0.41281.54
    下载: 导出CSV

    表  3   煤岩渗透率损害试验结果

    Table  3   Permeability damage test results of coal rock

    煤岩
    编号
    污染工作液气测渗透率/mD气测渗透率
    恢复率,%
    束缚水饱和度,%
    污染前污染后
    QS-2-48%KCl盐水0.220.2087.5054.71
    QS-2-5常规聚合物钻井液+破胶液0.210.1047.8663.25
    QS-2-6瓜尔胶钻井液+破胶液0.550.4785.1658.24
    QS-2-9瓜尔胶钻井液+破胶液0.340.2985.0854.50
    下载: 导出CSV
  • [1] 包敏新,殷玉平,张裕. 低温储层生物酶破胶工艺研究与应用[J]. 石油化工应用,2019,38(6):49–51. doi: 10.3969/j.issn.1673-5285.2019.06.011

    BAO Minxin, YIN Yuping, ZHANG Yu. Study and application of biological enzyme gel breaking technology in low temperature reservoir[J]. Petrochemical Industry Application, 2019, 38(6): 49–51. doi: 10.3969/j.issn.1673-5285.2019.06.011

    [2] 周建平,杨战伟,徐敏杰,等. 工业氯化钙加重胍胶压裂液体系研究与现场试验[J]. 石油钻探技术,2021,49(2):96–101. doi: 10.11911/syztjs.2021014

    ZHOU Jianping, YANG Zhanwei, XU Minjie, et al. Research and field tests of weighted fracturing fluids with industrial calcium chloride and guar gum[J]. Petroleum Drilling Techniques, 2021, 49(2): 96–101. doi: 10.11911/syztjs.2021014

    [3] 徐涛,倪小明. 潘庄区块煤层气井井径扩大主控因素研究[J]. 重庆科技学院学报(自然科学版),2014,16(1):92–95. doi: 10.19406/j.cnki.cqkjxyxbzkb.2014.01.023

    XU Tao, NI Xiaoming. Study on the main controlling factor of CBM borehole diameter expansion in Panzhuang Block[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2014, 16(1): 92–95. doi: 10.19406/j.cnki.cqkjxyxbzkb.2014.01.023

    [4] 宋瑞,宋峙潮,李小刚,等. 煤储层低伤害CO2泡沫压裂液[J]. 钻井液与完井液,2021,38(5):641–647.

    SONG Rui, SONG Zhichao, LI Xiaogang, et al. Low damage CO2 foam fracturing fluid for coal bed fracturing[J]. Drilling Fluid & Completion Fluid, 2021, 38(5): 641–647.

    [5] 孙建平,张健,王建中. 沁南潘河煤层气田空气钻井和固井技术[J]. 天然气工业,2011,31(5):24–27. doi: 10.3787/j.issn.1000-0976.2011.05.006

    SUN Jianping, ZHANG Jian, WANG Jianzhong. Air drilling and cementing in the Panhe CBM Gas Field, southern Qinshui Basin[J]. Natural Gas Industry, 2011, 31(5): 24–27. doi: 10.3787/j.issn.1000-0976.2011.05.006

    [6] 宫大军. 海水基速溶低摩阻胍胶压裂液的研究[J]. 钻井液与完井液,2021,38(3):371–374.

    GONG Dajun. Study on instant low friction seawater based guar gum fracturing fluids[J]. Drilling Fluid & Completion Fluid, 2021, 38(3): 371–374.

    [7] 叶建平,吴建光,房超,等. 沁南潘河煤层气田区域地质特征与煤储层特征及其对产能的影响[J]. 天然气工业,2011,31(5):16–20. doi: 10.3787/j.issn.1000-0976.2011.05.004

    YE Jianping, WU Jianguang, FANG Chao, et al. Regional geological and reservoir characteristics of the Panhe CBM Gas Field in the southern Qinshui Basin and their influences on CBM gas production capacity[J]. Natural Gas Industry, 2011, 31(5): 16–20. doi: 10.3787/j.issn.1000-0976.2011.05.004

    [8] 许启鲁,黄文辉,刘贝,等. 沁水盆地南部15号煤储层物性特征分析[J]. 煤矿安全,2015,46(3):160–163. doi: 10.13347/j.cnki.mkaq.2015.03.047

    XU Qilu, HUANG Wenhui, LIU Bei, et al. Physical characteristics analysis of No. 15 coal reservoir in southern Qinshui Basin[J]. Safety in Coal Mines, 2015, 46(3): 160–163. doi: 10.13347/j.cnki.mkaq.2015.03.047

    [9] 毛金成,杨小江,宋志峰,等. 耐高温清洁压裂液体系HT-160的研制及性能评价[J]. 石油钻探技术,2017,45(6):105–109. doi: 10.11911/syztjs.201706019

    MAO Jincheng, YANG Xiaojiang, SONG Zhifeng, et al. Development and performance evaluation of high temperature resistant clean fracturing fluid system HT-160[J]. Petroleum Drilling Techniques, 2017, 45(6): 105–109. doi: 10.11911/syztjs.201706019

    [10] 陈彬,张伟国,姚磊,等. 基于井壁稳定及储层保护的钻井液技术[J]. 石油钻采工艺,2021,43(2):184–188. doi: 10.13639/j.odpt.2021.02.008

    CHEN Bin, ZHANG Weiguo, YAO Lei, et al. Drilling fluid technology based on well stability and reservoir protection[J]. Oil Drilling & Production Technology, 2021, 43(2): 184–188. doi: 10.13639/j.odpt.2021.02.008

    [11] 许朋琛,陈宁,胡景东,等. 可降解清洁钻井液的研究及现场应用[J]. 钻井液与完井液,2017,34(3):27–32. doi: 10.3969/j.issn.1001-5620.2017.03.005

    XU Pengchen, CHEN Ning, HU Jingdong, et al. Study and field application of degradable clear drilling fluid[J]. Drilling Fluid & Completion Fluid, 2017, 34(3): 27–32. doi: 10.3969/j.issn.1001-5620.2017.03.005

    [12] 张政,秦勇,傅雪海,等. 潘庄区块煤层含气性分布规律及地质控制因素分析[J]. 煤炭科学技术,2014,42(5):98–102. doi: 10.13199/j.cnki.cst.2014.05.027

    ZHANG Zheng, QIN Yong, FU Xuehai, et al. Distribution law of gas-bearing property of coal seams and analysis on geological control factors in Panzhuang Block[J]. Coal Science and Technology, 2014, 42(5): 98–102. doi: 10.13199/j.cnki.cst.2014.05.027

    [13] 邓钧耀,刘奕杉,乔磊,等. 保德煤层气田黄河压覆区长水平段水平井钻井完井技术[J]. 石油钻探技术,2021,49(2):37–41. doi: 10.11911/syztjs.2020124

    DENG Junyao, LIU Yishan, QIAO Lei, et al. Drilling and completion technology of horizontal wells with long horizontal section in the Yellow River overlay area of the Baode coalbed methane field[J]. Petroleum Drilling Techniques, 2021, 49(2): 37–41. doi: 10.11911/syztjs.2020124

    [14] 闫霞,温声明,聂志宏,等. 影响煤层气开发效果的地质因素再认识[J]. 断块油气田,2020,27(3):375–380.

    YAN Xia, WEN Shengming, NIE Zhihong, et al. Re-recognition of geological factors affecting coalbed methane development effect[J]. Fault-Block Oil & Gas Field, 2020, 27(3): 375–380.

    [15] 乔磊,申瑞臣,黄洪春,等. 煤层气多分支水平井钻井工艺研究[J]. 石油学报,2007,28(3):112–115. doi: 10.3321/j.issn:0253-2697.2007.03.023

    QIAO Lei, SHEN Ruichen, HUANG Hongchun, et al. Drilling technology of multi-branch horizontal well[J]. Acta Petrolei Sinica, 2007, 28(3): 112–115. doi: 10.3321/j.issn:0253-2697.2007.03.023

    [16] 温航,陈勉,金衍,等. 钻井液活度对硬脆性页岩破坏机理的实验研究[J]. 石油钻采工艺,2014,36(1):57–60. doi: 10.13639/j.odpt.2014.01.015

    WEN Hang, CHEN Mian, JIN Yan, et al. Experimental research on brittle shale failure caused by drilling fluid activity[J]. Oil Drilling & Production Technology, 2014, 36(1): 57–60. doi: 10.13639/j.odpt.2014.01.015

    [17] 岳前升,陈军,邹来方,等. 沁水盆地基于储层保护的煤层气水平井钻井液的研究[J]. 煤炭学报,2012,37(增刊2):416–419. doi: 10.13225/j.cnki.jccs.2012.s2.009

    YUE Qiansheng, CHEN Jun, ZOU Laifang, et al. Research on coalbed methane drilling fluid for horizontal well based on coal reservoir protection in Qinshui Basin[J]. Journal of China Coal Society, 2012, 37(supplement2): 416–419. doi: 10.13225/j.cnki.jccs.2012.s2.009

    [18] 袁光杰,付利,王元,等. 我国非常规油气经济有效开发钻井完井技术现状与发展建议[J]. 石油钻探技术,2022,50(1):1–12. doi: 10.11911/syztjs.2022002

    YUAN Guangjie, FU Li, WANG Yuan, et al. The up-to-date drilling and completion technologies for economic and effective development of unconventional oil & gas and suggestions for further improvements[J]. Petroleum Drilling Techniques, 2022, 50(1): 1–12. doi: 10.11911/syztjs.2022002

    [19] 曹立虎,张遂安,王晶,等. 松软煤层水平孔生物酶可解堵钻井液研究[J]. 石油化工高等学校学报,2014,27(2):65–68. doi: 10.3969/j.issn.1006-396X.2014.02.014

    CAO Lihu, ZHANG Suian, WANG Jing, et al. Research of enzyme drilling fluid in soft coal seam[J]. Journal of Petrochemical Universities, 2014, 27(2): 65–68. doi: 10.3969/j.issn.1006-396X.2014.02.014

  • 期刊类型引用(6)

    1. 宋舜尧,周博宇,刘晓慧,杨飞,马忠梅,王海柱. 页岩油储层环保型高性能水基钻井液体系研究及应用. 化学研究与应用. 2024(08): 1767-1775 . 百度学术
    2. 高书阳. 苏北陆相页岩油高性能水基钻井液技术. 石油钻探技术. 2024(04): 51-56 . 本站查看
    3. 秦春,刘纯仁,李玉枝,王治国,陈文可. 苏北断块页岩油水平井钻井提速关键技术. 石油钻探技术. 2024(06): 30-36 . 本站查看
    4. 王中华. 国内钻井液技术现状与发展建议. 石油钻探技术. 2023(04): 114-123 . 本站查看
    5. 李明辉,王凯,王清臣. 水基钻井液固相分布与控制——以苏里格东部气井为例. 钻井液与完井液. 2023(05): 611-616 . 百度学术
    6. 迟建功. 大庆古龙页岩油水平井钻井技术. 石油钻探技术. 2023(06): 12-17 . 本站查看

    其他类型引用(2)

图(3)  /  表(3)
计量
  • 文章访问数:  368
  • HTML全文浏览量:  166
  • PDF下载量:  101
  • 被引次数: 8
出版历程
  • 收稿日期:  2022-07-16
  • 修回日期:  2022-12-27
  • 网络出版日期:  2022-11-07
  • 刊出日期:  2023-01-31

目录

    /

    返回文章
    返回