Loading [MathJax]/jax/output/SVG/jax.js

基于热传导时域积分的井下流量测量方法

鲁义攀, 魏勇, 陈强, 刘国权, 刘杰

鲁义攀,魏勇,陈强,等. 基于热传导时域积分的井下流量测量方法[J]. 石油钻探技术,2023, 51(1):106-114. DOI: 10.11911/syztjs.2022118
引用本文: 鲁义攀,魏勇,陈强,等. 基于热传导时域积分的井下流量测量方法[J]. 石油钻探技术,2023, 51(1):106-114. DOI: 10.11911/syztjs.2022118
LU Yipan, WEI Yong, CHEN Qiang, et al. Downhole flow rate measurement method based on the time domain integral of heat conduction [J]. Petroleum Drilling Techniques,2023, 51(1):106-114. DOI: 10.11911/syztjs.2022118
Citation: LU Yipan, WEI Yong, CHEN Qiang, et al. Downhole flow rate measurement method based on the time domain integral of heat conduction [J]. Petroleum Drilling Techniques,2023, 51(1):106-114. DOI: 10.11911/syztjs.2022118

基于热传导时域积分的井下流量测量方法

基金项目: 中国石油集团科学研究与技术开发项目“测井采集处理解释关键技术研究”(编号:2021DJ4004)资助
详细信息
    作者简介:

    鲁义攀(1997—),男,湖北孝感人,2020年毕业于长江大学测控技术与仪器专业,在读硕士研究生,主要从事测井电子仪器与信号处理研究。E-mail:1835778070@qq.com

  • 中图分类号: P631.8+1

Downhole Flow Rate Measurement Method Based on the Time Domain Integral of Heat Conduction

  • 摘要:

    针对油田低产液生产井流量测量困难的问题,根据多相流体热力学理论,利用整个测量周期内探测器周围流体冲刷引起的热传导效应,提出了一种基于热传导时域积分的井下流量测量方法。首先,采用间歇式恒功率加热的方式,给探测器提供周期性能量;然后,采用积分法计算和分析了探测器内部温度在升温和降温过程中随外界流体流量变化的规律。理论分析与试验结果表明,时域积分面积与流量呈极好的相关性,尤其在低流量条件下具有较高的分辨率,该方法解决了传统涡轮流量计在流量较低情况下因涡轮无法启动导致失去检测能力的问题。基于热传导时域积分的井下流量测量方法,促进了油水两相流检测技术的发展,为低产液井流量测量提供了一种新的技术手段。

    Abstract:

    In light of the difficulties in measuring the flow rate of low-productivity producers in oil fields, the heat conduction effect caused by ambient fluid around the detector in the whole measurement cycle was adopted, a downhole flow rate measurement method based on time domain integral of heat transfer was put forward according to multiphase fluid thermodynamic theory. First, intermittent constant power heating was used to provide periodic energy to the detector. Then, an integral method was employed to calculate and analyze the variation of the internal temperature variation law of the detector with the external fluid flow during heating and cooling. The theoretical analysis and experimental study showed that the time domain integral area had an excellent correlation with the flow rate, and had high resolution under low flow rate condition. The problem that traditional turbine flowmeters lose their capability of detection as their turbines couldn’t be activated under low flow rate was solved with this method. The downhole flow rate measurement method based on the time domain integral of heat conduction has promoted the development of oil-water two-phase flow detection technology. It has provided a new technical means for flow rate measurement of low-productivity producers.

  • 准确了解油藏流体性质是油田开发成功的关键[1],在数千米深的油气井井下建立多功能流体分析系统——“井下流体分析实验室”,直接对储层流体进行原地实时分析,对于油气勘探开发至关重要[2]。随钻井下流体实验室在钻井过程中提供高精度流体成分数据,以获得更全面的油藏动态信息,持续钻进的同时保证最佳的井眼轨迹,避免钻井井下风险,确保定向与完井质量[3]

    井下油气流体分析技术主要有光学分析法和核磁共振(NMR)分析法。光学分析法能够评价储层污染,但遇到油基钻井液或者储层流体为油水混合相时评价效果欠佳。核磁共振技术不受钻井液或储层影响,能够在储层温度和压力条件下获得地层流体的主要信息[4-5],还可以评价钻井液对地层的污染程度[6]。2000年,Halliburton公司推出了井下流体分析仪MRLab,采用Halbach永磁体结构产生静磁场,射频线圈工作频率大约2 MHz[7],测量液态氢获取流体信息;2002年,Schlumberger公司提出了核磁共振流体分析仪与光学分析仪相结合的方案,后来采用光学与核磁共振测井结合的形式进行作业;2002年,Halliburton公司研制出新一代井下核磁共振流体分析仪并商业化[8],在储层温度和压力条件下测量流体的弛豫时间,获得气油比、流体黏度等信息。另外,吴保松等人[9-10]开发了多功能电缆式井下核磁共振流体分析试验样机,研究了在线获取样品信息的探测方法;陈伟梁等人[11]实现了一维和二维时域核磁共振测量。目前,国内外尚无井下随钻核磁共振流体分析仪器开发和应用的报道。

    为此,笔者提出了井下随钻核磁共振流体分析装置设计方案,以井下随钻仪器体积为约束条件,优化设计和研制了随钻小型核磁共振流体分析传感器样机,开展了流体核磁共振响应信号测试和核磁共振弛豫时间谱分析试验,验证了方案的可行性。

    井下随钻核磁共振流体分析的关键是探测器功能与结构的综合设计,要求井下核磁共振流体探测器不但能够进行井下随钻核磁共振信号测量,还要求满足井下钻铤的空间约束条件,电磁和材料性能适应井下高温环境,整体结构满足井下机械强度和压力密封要求。

    为对钻铤尺寸约束下的物理空间设计进行仿真,并满足实验室内核磁共振流体探测器的仿真测试需要,设计了原型样机,主要由本体、外盖、盖板和核磁共振流体探测器等组成(见图1)。

    图  1  井下随钻核磁共振流体分析试验样机结构
    Figure  1.  Structure of NMR fluid analyzer prototype for downhole LWD

    将核磁共振流体探测器嵌入短节本体中,用卡环、螺栓固定。将外盖用螺栓固定在短节上,外盖与短节之间用O形圈密封,防止液体进入核磁共振流体探测器。短节长度为1 100 mm,外径为190.0 mm,符合常用钻铤尺寸,上下扣形均为API标准扣型(左端为ϕ193.7 mm正规扣,右端为NC50扣)。钻井液从短节内部的水眼通道流过,为了适应核磁共振流体探测器的挂接,采用了偏水眼设计,兼顾了整体强度和过流面积。为了方便室内测试,核磁共振流体探测器两端设置了流体口1和流体口2,用于仿真流体输入和排出探测器的过程。

    井下核磁共振流体探测器呈圆柱形,主要由高导磁外筒、永磁体、射频线圈、流体管路和调谐匹配电路等部分组成(见图2)。由于永磁材料充磁体积的限制,永磁体在轴向上由3段独立的磁块粘结而成,磁体总长200.0 mm。永磁材料为钐钴,具有高居里温度和低温度系数的优点。永磁体组合方案从传统Halbach结构发展而来[12],由8个各为45°的离散型磁瓦(内半径22.5 mm,外半径40.0 mm)组合而成。磁瓦的充磁方向按照双极Halbach设置,起到中心聚磁的作用,最终在内腔中形成由左至右的N—S双极强磁场。

    图  2  井下核磁共振流体探测器结构
    Figure  2.  Structure of downhole NMR fluid detector

    理想Halbach结构具有外部零漏磁的特点,为了减小采用离散Halbach带来的外部漏磁场,永磁体外部增加了高导磁材料外壳,将外部磁力线从N极直接导回S极进入磁体内部,实现真正零漏磁的同时,进一步增强聚磁效果,并对脆性的钐钴材料提供保护作用。高导磁外壳材料为高磁导率的工业纯铁,在其外部做了防锈处理,具有非常高的电导率,作为屏蔽层为射频线圈提供良好的低噪电磁环境。

    核磁共振探流体测器横截面上的磁路设计如图3(a)所示,外壳外径为100.0 mm,磁块内径为45.0 mm。永磁体组合内腔的中心为样品管,内部容纳流体样品;外部刻有螺旋槽,用于容纳和固定漆包线螺线管线圈绕组。永磁组合内壁上设置有电磁屏蔽层,以防止射频线圈发射的电磁波直接照射到磁体材料上产生涡流噪声。

    利用有限元软件,对探测器的磁路进行仿真分析。磁场中心磁感应强度B0=0.535 6 T,对应1H氢核共振拉莫尔频率f0=22.81 MHz,并在磁体中心区域形成了均匀区域。图3(b)为静磁场的二维实际测绘结果,图3(c)图3(d)分别为沿z轴和x方向上的磁感应强度分布,零点位于永磁组合内腔中心。z轴和y轴上10.0 mm范围内的磁感应强度与中心完全相同,磁场均匀度非常高。高导磁外壳表面的磁感应强度约为10–5 T,与地磁场强度的量级相同,实现了等效无漏磁,通过套管段时更加安全。

    图  3  核磁共振流体探测器的磁体结构和磁场分布
    Figure  3.  Magnet structure and magnetic field distribution of downhole NMR fluid detector

    射频天线由射频线圈和调谐前端组成。射频线圈为螺线管结构,由高温漆包线绕制在特制样品管外侧。样品管材料为聚醚醚酮(PEEK)工业高分子材料,具有良好的耐高温特性和较高的硬度。PEEK不含氢元素,测量时没有核磁共振信号干扰。样品管外侧留有螺旋槽,便于固定绕线间距。由于射频线圈处于静磁场中,施加高电压射频场时受到磁场的洛伦兹力作用会发生机械振动,产生“振铃”噪声,采用耐高温室内硫化(RTV)胶水将漆包线与样品管粘结牢固。螺线管线圈产生的射频场垂直于纸面(沿y轴),而静磁场方向平行于z轴,二者天然呈垂直关系,满足核磁共振条件,利用了螺线管天线高效率的优势。

    研制的小型核磁共振流体探测器磁体总成、射频线圈与样品管如图4所示。为减小射频脉冲发射过程中电路的能量损耗,调谐前端高压电容(位于图4(a)内部,无法显示)尽量紧靠射频线圈接线一侧。射频发射时,对天线施加大功率脉冲,谐振电路各部件中产生高压和较大的瞬间电流,使用RTV胶对各电子组件和天线走线进行绝缘隔离保护,以减小天线“振铃”噪声。

    图  4  井下随钻核磁共振流体探测器的磁体总成、射频线圈与样品管
    Figure  4.  NMR fluid analysis detector for downhole logging while drilling

    井下随钻核磁共振流体探测器组装完毕后,考虑金属部件对射频线圈自身电容电感的耦合影响,利用安捷伦精密阻抗分析仪(型号为42941A)对射频天线整体进行了调谐。利用天线前端匹配网络、耐高压固定和微调电容阵列,得到中心谐振频率frf=22.81 MHz、品质因数Q=45、阻抗Z0=50 Ω,与采集电路的频率和阻抗匹配较好。

    核磁共振回波是瞬态信号,激发核磁共振现象需要探测器满足比较严密的物理条件(静磁场均匀且与射频场垂直,低电磁噪声环境),不仅其电气性能与电子采集系统要良好匹配(频率和阻抗),还要考虑探测器与电子采集系统之间射频信号线的衰减影响。

    在电子采集系统上编写了CPMG(Carr-Purcell-Meiboom-Gill)脉冲序列时序,利用探测器采集样品自旋回波。经过调试确定CPMG脉冲序列主要试验参数:频率22.81 MHz,等待时间15 s、回波间隔1 ms,单回波包罗采集64个点,信号叠加16次,接收器增益100。测试时,在纯净水中加入脱水硫酸铜形成硫酸铜溶液,在保持信号量不变的情况下,可以缩短样品的纵向弛豫时间T1,提高测试效率。试验结果表明,获得了高质量、高信噪比(SNR=150)的核磁共振自旋回波串。对采集的原始数据信号进行回波峰值提取,得到CPMG回波信号衰减曲线(见图5)。

    图  5  硫酸铜溶液样品的回波串衰减曲线
    Figure  5.  Echo attenuation curves in the CuSO4 solution sample

    从图5可以看出,回波串的包络具有明显的单指数衰减特征;单个回波显示包络光滑、相位稳定,表明扫频正确、参数合理,验证了在试验样机制作工艺上采取的压制涡流和“振铃”的做法。

    试验样机的回波间隔最小可设定为60 μs,理论上能够探测的横向弛豫时间T2达到90 μs,覆盖了非常宽泛的井下流体弛豫时间范围,提高了对T2较短的稠油的分辨能力。这一方面受益于探测器具有较高的共振频率,天线上的能量能够快速泻放;另一方面表明选取天线的品质因数Q值较为合理,在信噪比和回波间隔之间取得了较好的平衡。

    选取盐水、煤油、白油和水基钻井液(取自胜利油田)等4种典型油水样品,考察该试验样机的区分能力。首先测量其CPMG回波串,再利用逆Laplace正则化反演算法求取横向弛豫时间T2分布(见图6,其中横坐标T2采用在10–1~104 ms范围内对数平均布点的方式,纵坐标为不同组分对应的信号幅度)。

    图  6  流体样品及其T2谱测量结果
    Figure  6.  Fluid samples and their T2 spectrum measurement results

    孔隙流体的T2可表示为:

    1T2=1T2bulk+1T2surf+1T2diff (1)

    式中:T2为横向弛豫时间,ms;T2bulk为自由弛豫时间,ms;T2surf为表面弛豫时间,ms;T2diff为扩散弛豫时间,ms。

    图6可以看出,盐水、煤油和白油的组分相态相对连续,T2谱呈单峰分布。试管中的样品接近理想自由流体状态,T2时间主要来自自由弛豫贡献。

    计算得到盐水、煤油和白油样品的T2分布主峰分别位于2 000,1 000和350 ms处,在各自自由流体弛豫时间T2bulk理论范围内。水基钻井液样品取自胜利油田钻井现场,含有黏土和添加剂。黏土具有非常大的比表面积,对水具有吸附作用,使水呈束缚状态,大大缩短了水的弛豫时间T2。测量结果表明,水基钻井液的T2谱呈双峰分布,包括8 ms处的主信号峰和100 ms处的小信号峰,表明有2种T2差异较明显的组分。主信号峰8 ms位于黏土束缚水范围内,远小于其他3种自由流体的弛豫时间T2,符合分析结果;小信号峰来自某些含氢元素的微量组分。4种流体样品的核磁共振T2谱信号具有十分明显的特征,能够互相区分,因此可以利用T2分布与流体黏度等关键参数的对应关系进行井下流体的精细分析和评价。

    1)根据提出的井下随钻核磁共振流体分析装置设计方案,设计和研制了小型核磁共振流体分析试验样机,为构建井下随钻地层流体核磁共振实验室奠定了基础。

    2)研制的核磁共振流体分析装置具有体积小、易便携、磁场强、均匀性高和信噪比高的特点。利用样机进行流体信号质量测试和样品分析,能够准确区分试验样品流体类型,测量结果正确可靠,说明设计方案可行。

    3)形成的核磁共振探测器小型化关键技术解决了检测信息滞后和样品干扰的问题,为传统地面钻井液录井检测向井下随钻测井发展提供了借鉴。建议继续优化核磁共振探测器尺寸,形成耐高压技术方案,并利用多维核磁共振技术进行随钻流体检测先导研究。

  • 图  1   热式流量测量系统结构示意

    Figure  1.   Structure of thermal flow rate measurement system

    图  2   测速探测器内部加热器的工作时序和内部温度变化规律

    Figure  2.   Working sequence and internal temperature variation law of internal heater of velocity detector

    图  3   测速探测器加热过程中的温度变化曲线

    Figure  3.   Temperature variation curve of velocity detector during heating

    图  4   测速探测器冷却过程中的温度变化曲线

    Figure  4.   Temperature variation curve of velocity detector during cooling

    图  5   不同流量条件下测速探测器的温度变化曲线

    Figure  5.   Temperature variation curve of velocity detector under different flow rates

    图  6   加热及冷却面积示意

    Figure  6.   Heating and cooling areas

    图  7   流量检测方案示意

    Figure  7.   Schematics of flow rate detection design

    图  8   检测系统硬件结构

    Figure  8.   Hardware structure of detection system

    图  9   流量测试试验平台

    Figure  9.   Experimental platform for flow rate measurement

    图  10   不同流量条件下测速探测器与流体之间温差变化

    Figure  10.   Variation of temperature difference between velocity detector and fluid under different flow rates

    图  11   F值与流量关系曲线

    Figure  11.   Relationship between F value and flow rate

    表  1   系统流量测量结果分析

    Table  1   Measurement results analysis of system flow rate

    流量/
    (m3·d−1
    F平均值F正向绝对误差F正向相对误差,%F负向绝对误差F负向相对误差,%
    002 3463 807
    2150 3101 5731.0473 0842.052
    4247 0431 9280.7802 8731.163
    6289 2532 1560.7451 4920.516
    8303 1193 1941.0541 7870.590
    10315 1523 2231.0232 8950.919
    12325 8782 4380.7482 3360.717
    14334 1522 1750.6511 6500.494
    16343 1041 2580.3672 6440.771
    18351 1042 2460.6402 0350.580
    20358 7612 0440.5701 3590.379
    22365 9201 5960.4361 9790.541
    24371 1611 7610.4742 2020.593
    26376 0532 0400.5422 1070.560
    28380 2792 1940.5771 3170.346
    30384 9991 2750.3311 9280.501
    下载: 导出CSV
  • [1]

    AMINA B, AHMED H. An overview of thermal mass flowmeters applicability in oil and gas industry[J]. Energy Procedia, 2017, 141: 299–303. doi: 10.1016/j.egypro.2017.11.109

    [2] 李群生,朱礼平,李果,等. 基于井下流量测量的微流量控制系统[J]. 石油钻探技术,2012,40(3):23–27. doi: 10.3969/j.issn.1001-0890.2012.03.005

    LI Qunsheng, ZHU Liping, LI Guo, et al. Micro-flow control system based on downhole flow measurement[J]. Petroleum Drilling Techniques, 2012, 40(3): 23–27. doi: 10.3969/j.issn.1001-0890.2012.03.005

    [3] 王江帅,李军,柳贡慧,等. 气侵条件下新型双梯度钻井环空出口流量变化规律研究[J]. 石油钻探技术,2020,48(4):43–49. doi: 10.11911/syztjs.2020043

    WANG Jiangshuai, LI Jun, LIU Gonghui, et al. Study on the change law of annular outlet flow rate in new-type dual-gradient drilling under gas cut condition[J]. Petroleum Drilling Techniques, 2020, 48(4): 43–49. doi: 10.11911/syztjs.2020043

    [4] 杨玲智,周志平,杨海恩,等. 桥式同心井下恒流分层注水技术[J]. 石油钻探技术,2022,50(4):104–108. doi: 10.11911/syztjs.2022051

    YANG Lingzhi, ZHOU Zhiping, YANG Haien, et al. Downhole constant-flow stratified water injection technology with concentric bridge[J]. Petroleum Drilling Techniques, 2022, 50(4): 104–108. doi: 10.11911/syztjs.2022051

    [5] 王鲁海,李军,关松,等. 低流量条件下涡轮流量计的黏度响应特性[J]. 测井技术,2012,36(4):336–339. doi: 10.3969/j.issn.1004-1338.2012.04.002

    WANG Luhai, LI Jun, GUAN Song, et al. The performance of turbine flowmeter with viscosity changes under low flow condition[J]. Well Logging Technology, 2012, 36(4): 336–339. doi: 10.3969/j.issn.1004-1338.2012.04.002

    [6] 王月明,贾华,李文涛,等. 管道对电磁流量计敏感场影响研究[J]. 仪表技术与传感器,2017(7):29–31. doi: 10.3969/j.issn.1002-1841.2017.07.009

    WANG Yueming, JIA Hua, LI Wentao, et al. Influence study of pipelines on electromagnetic flow meter sensitive field[J]. Instrument Technique and Sensor, 2017(7): 29–31. doi: 10.3969/j.issn.1002-1841.2017.07.009

    [7] 张易农,彭静,程耀华,等. 多种超声流量计对气液两相流流量计量的试验研究[J]. 中国测试,2017,43(9):143–147. doi: 10.11857/j.issn.1674-5124.2017.09.026

    ZHANG Yinong, PENG Jing, CHENG Yaohua, et al. Experimental study on gas-liquid two-phase flow measurement by using multiple ultrasonic flowmeter[J]. China Measurement & Testing Technology, 2017, 43(9): 143–147. doi: 10.11857/j.issn.1674-5124.2017.09.026

    [8] 张德政,王志彬,于志刚,等. 高液气比气井临界携液流量计算方法[J]. 断块油气田,2022,29(3):411–416.

    ZHANG Dezheng, WANG Zhibin, YU Zhigang, et al. Calculation method of critical liquid-carrying flow rate of high liquid-gas ratio gas well[J]. Fault-Block Oil & Gas Field, 2022, 29(3): 411–416.

    [9]

    KIM T H, KIM D K, KIM S J. Study of the sensitivity of a thermal flow sensor[J]. International Journal of Heat and Mass Transfer, 2009, 52(7/8): 2140–2144.

    [10]

    BEKRAOUI A, HADJADJ A. Thermal flow sensor used for thermal mass flowmeter[J]. Microelectronics Journal, 2020, 103: 104871. doi: 10.1016/j.mejo.2020.104871

    [11] 姜兆宇. 热式质量流量计应用于井下液相流量测量研究[D]. 大庆: 东北石油大学, 2013.

    JIANG Zhaoyu. The research of thermal mass flowmeter applied to downhole liquid flow rate measurment[D]. Daqing: Northeast Petroleum University, 2013.

    [12] 汪栋良,余厚全,杨旭辉,等. 井下恒功率热式流量计设计与实现[J]. 石油管材与仪器,2018,4(2):20–23. doi: 10.19459/j.cnki.61-1500/te.2018.02.006

    WANG Dongliang, YU Houquan, YANG Xuhui, et al. Design and implementation of downhole constant power thermal flowmeter[J]. Petroleum Tubular Goods & Instruments, 2018, 4(2): 20–23. doi: 10.19459/j.cnki.61-1500/te.2018.02.006

    [13] 马杰. 基于恒功率原理的核电级热式质量流量计研制[D]. 合肥: 合肥工业大学, 2021.

    MA Jie. Development of nuclear thermal mass flowmeter based on constant power principle[D]. Hefei: Hefei University of Technology, 2021.

    [14] 范宋杰,魏勇,余厚全,等. 阵列恒温差热式流量计的设计与开发[J]. 科学技术与工程,2021,21(18):7513–7518. doi: 10.3969/j.issn.1671-1815.2021.18.016

    FAN Songjie, WEI Yong, YU Houquan, et al. Design and development of a constant temperature differential thermal flowmeter with sensor array[J]. Science Technology and Engineering, 2021, 21(18): 7513–7518. doi: 10.3969/j.issn.1671-1815.2021.18.016

    [15] 张夷非,魏勇,余厚全,等. 恒温差热式流量计影响因素模拟与试验研究[J]. 石油钻探技术,2021,49(2):121–126. doi: 10.11911/syztjs.2021023

    ZHANG Yifei, WEI Yong, YU Houquan, et al. Simulation and experimental studies on the influencing factors of a thermal flowmeter with constant temperature difference[J]. Petroleum Drilling Techniques, 2021, 49(2): 121–126. doi: 10.11911/syztjs.2021023

    [16] 汪余景,翟军勇. 基于恒温差的热式空气流量计[J]. 仪表技术与传感器,2017(6):41–43. doi: 10.3969/j.issn.1002-1841.2017.06.011

    WANG Yujing, ZHAI Junyong. Thermal air flow meter based on constant temperature difference[J]. Instrument Technique and Sensor, 2017(6): 41–43. doi: 10.3969/j.issn.1002-1841.2017.06.011

    [17]

    JIANG Junhao, CAO Shaozhong. The design of novel thermal gas mass flowmeter[J]. Applied Mechanics and Materials, 2012, 224: 435–439. doi: 10.4028/www.scientific.net/AMM.224.435

    [18] 戴卓勋. 基于热传导的恒温差式低产液量检测仪研制[D]. 西安: 西安石油大学, 2021.

    DAI Zhuoxun. Development of low liquid yield detector with constant temperature difference based on heat conduction[D]. Xi’an: Xi’an Shiyou University, 2021.

    [19] 贾惠芹,戴卓勋,陈强,等. 井下恒温差热式液体流量计[J]. 石油钻采工艺,2021,43(6):817–822. doi: 10.13639/j.odpt.2021.06.020

    JIA Huiqin, DAI Zhuoxun, CHEN Qiang, et al. Downhole constant temperature difference thermal liquid flowmeter[J]. Oil Drilling & Production Technology, 2021, 43(6): 817–822. doi: 10.13639/j.odpt.2021.06.020

    [20] 蔡晖,刘英宪,马奎前,等. 海上油藏流场评价方法[J]. 特种油气藏,2021,28(4):129–135. doi: 10.3969/j.issn.1006-6535.2021.04.018

    CAI Hui, LIU Yingxian, MA Kuiqian, et al. Study on evaluation method of flow field in offshore oil reservoirs[J]. Special Oil & Gas Reservoirs, 2021, 28(4): 129–135. doi: 10.3969/j.issn.1006-6535.2021.04.018

    [21] 张夷非,魏勇,余厚全,等. 恒温差热式流量计分段PID控制的仿真与实验[J]. 测井技术,2021,45(3):284–289. doi: 10.16489/j.issn.1004-1338.2021.03.010

    ZHANG Yifei, WEI Yong, YU Houquan, et al. Simulation and experimental research on segmented PID control of constant temperature differential thermal flowmeter[J]. Well Logging Technology, 2021, 45(3): 284–289. doi: 10.16489/j.issn.1004-1338.2021.03.010

  • 期刊类型引用(1)

    1. 肖功勋. 复杂层状地层的随钻核磁共振测井响应模拟分析. 中国石油和化工标准与质量. 2021(05): 103-105 . 百度学术

    其他类型引用(0)

图(11)  /  表(1)
计量
  • 文章访问数:  236
  • HTML全文浏览量:  112
  • PDF下载量:  48
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-05-17
  • 修回日期:  2022-11-21
  • 网络出版日期:  2022-12-27
  • 刊出日期:  2023-01-31

目录

/

返回文章
返回