Fracturing Technologies with Profile Control and Water Shutoff for Medium and High Water-Cut Wells in Ultra-Low Permeability Reservoirs of Changqing Oilfield
-
摘要:
长庆油田特低渗透油藏进入中高含水期后受储层高渗带影响,常规重复压裂存在含水率上升、增产幅度低等问题。为解决该问题,根据典型油藏长期注采开发实际,采用油藏三维地质建模方法,结合加密井生产资料,研究了中高含水油井调堵压裂增产机理,分析了不同调堵压裂参数对油井重复改造效果的影响,提出了“前置调堵控含水、动态多级暂堵压裂提单产”的重复压裂技术思路。通过室内试验,研发了PEG-1凝胶,凝胶主剂质量分数为5%~10%时,可保持较高水平的凝胶强度;优化注入排量为1.5 m3/min,注入量为300~600 m3,可在裂缝深部40~80 m处封堵高渗条带;优化动态多级暂堵压裂技术,缝内净压力提高到5.0 MPa以上,实现了压裂裂缝由低应力区向高应力区扩展,以动用侧向剩余油。现场试验结果表明,实施调堵压裂后单井日产油量平均增加1.07 t,含水率降低9.0百分点,实现了中高含水井重复压裂“增油控水”的目的。该调堵压裂技术为长庆油田特低渗透油藏中高含水井重复改造提供了新的技术途径。
Abstract:Due to the influence of the high-permeability zone, the water cut will increase and reservoir stimulation results are poor when conventional refracturing is implemented in the ultra-low permeability reservoirs of Changqing Oilfield at the medium and high water-cut development stage. Focusing on the long-term injection-production development practices of typical reservoirs and infill well production data, this paper uses 3D geological modeling to analyze the stimulation mechanism of fracturing with profile control and water shutoff in medium and high water-cut oil wells. The influences of fracturing parameters on the effect of repeated stimulation were studied, and a refracturing concept hinging on “profile control and water shutoff in the pad adding stage to control water cut and dynamic multistage temporary plugging fracturing to improve single-well production” was advanced. PEG-1 gel was developed through laboratory experiments and when the mass fraction of its main agent achieved 5%-10%, gel strength would be maintained at a high level. With an optimal injection flow rate of 1.5 m3/min and an injection volume of 300-600 m3, the high-permeability zones at the fracture depth of 40-80 m could be effectively plugged. In this way, the dynamic multistage temporary plugging fracturing technology was optimized. As a result, the net pressure in the fractures was increased to above 5.0 MPa, fractures extended from the low-stress zone to the high-stress zone, and the production of the oil remaining laterally was thereby produced. Field test results showed that average daily oil production improvement per well was 1.07 t/d and water cut was reduced by 9 percentage points after the measure was implemented, which indicated that the goal of increasing oil production while controlling the water was accomplished by refracturing the medium and high water-cut wells. The proposed fracturing technology with profile control and water shutoff provides a new technical concept for the repeated stimulation of medium and high water-cut wells in ultra-low permeability reservoirs of Changqing Oilfield.
-
-
表 1 前置调堵压裂施工参数及效果
Table 1 Parameters of fracturing with profile control and water shutoff in the pad adding stage and measure effect
井号 前置调堵剂
用量/m3施工排量/
(m3·min−1)日产液/m³ 日产油/t 含水率,% 压裂有效期/
d累计增
油量/t压裂前 压裂后 压裂前 压裂后 压裂前 压裂后 X13-181 300 5.0 1.33 1.67 0.48 0.89 57.4 46.7 668 369 D192-38 200 4.0 0.57 1.91 0.35 1.65 26.8 13.6 332 713 D194-39 200 5.0 1.00 1.50 0.59 1.35 30.1 10.0 337 286 J296-3 300 6.0 0.34 3.32 0.15 1.69 47.6 45.1 391 410 L81-45 150 6.0 0.92 4.55 0.45 2.23 42.7 42.6 433 534 -
[1] 王东琪,殷代印. 特低渗透油藏水驱开发效果评价[J]. 特种油气藏,2017,24(6):107–110. doi: 10.3969/j.issn.1006-6535.2017.06.020 WANG Dongqi, YIN Daiyin. Waterflooding performance evaluation in ultra-low permeability oil reservoir[J]. Special Oil & Gas Reservoirs, 2017, 24(6): 107–110. doi: 10.3969/j.issn.1006-6535.2017.06.020
[2] 阳晓燕. 非均质油藏水驱开发效果研究[J]. 特种油气藏,2019,26(2):152–156. doi: 10.3969/j.issn.1006-6535.2019.02.028 YANG Xiaoyan. Waterflood development effect study of heterogeneous reservoir[J]. Special Oil & Gas Reservoirs, 2019, 26(2): 152–156. doi: 10.3969/j.issn.1006-6535.2019.02.028
[3] 张玉银,赵向原,焦军. 鄂尔多斯盆地安塞地区长6储层裂缝特征及主控因素[J]. 复杂油气藏,2018,11(2):25–30. ZHANG Yuyin, ZHAO Xiangyuan, JIAO Jun. Characteristics and major control factors of natural fractures in Chang 6 Formation in Ansai Area, Ordos Basin[J]. Complex Hydrocarbon Reservoirs, 2018, 11(2): 25–30.
[4] 黄婷,苏良银,达引朋,等. 超低渗透油藏水平井储能压裂机理研究与现场试验[J]. 石油钻探技术,2020,48(1):80–84. doi: 10.11911/syztjs.2020024 HUANG Ting, SU Liangyin, DA Yinpeng, et al. Research and field test on energy storage fracturing mechanism of horizontal wells in ultra-low permeability reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(1): 80–84. doi: 10.11911/syztjs.2020024
[5] 杨浩,李新发,陈鑫,等. 低渗透气藏水平井分段压裂分段优化方法研究[J]. 特种油气藏,2021,28(1):125–129. doi: 10.3969/j.issn.1006-6535.2021.01.018 YANG Hao, LI Xinfa, CHEN Xin, et al. Study on staged optimization method of staged fracturing for horizontal wells in low-permeability gas reservoir[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 125–129. doi: 10.3969/j.issn.1006-6535.2021.01.018
[6] 蔡卓林,赵续荣,南荣丽,等. 暂堵转向结合高排量体积重复压裂技术[J]. 断块油气田,2020,27(5):661–665. CAI Zhuolin, ZHAO Xurong, NAN Rongli, et al. Volume re-fracturing technology of temporary plugging and diverting with high displacement[J]. Fault-Block Oil & Gas Field, 2020, 27(5): 661–665.
[7] 周宗良,蔡明俊,张凡磊,等. 高含水油藏多介质驱替剩余油赋存状态与时移特征[J]. 断块油气田,2020,27(5):608–612. ZHOU Zongliang, CAI Mingjun, ZHANG Fanlei, et al. Residual oil occurrence state and time-shift characteristics of multi-media displacement of high water-cut reservoirs[J]. Fault-Block Oil & Gas Field, 2020, 27(5): 608–612.
[8] 廖月敏,付美龙,杨松林. 耐温抗盐凝胶堵水调剖体系的研究与应用[J]. 特种油气藏,2019,26(1):158–162. LIAO Yuemin, FU Meilong, YANG Songlin. Study and application of water plugging and profile control system of heat and salt resistant gel[J]. Special Oil & Gas Reservoirs, 2019, 26(1): 158–162.
[9] 贾玉琴,郑明科,杨海恩,等. 长庆油田低渗透油藏聚合物微球深部调驱工艺参数优化[J]. 石油钻探技术,2018,46(1):75–82. JIA Yuqin, ZHENG Mingke, YANG Haien, et al. Optimization of operational parameters for deep displacement involving polymer microspheres in low permeability reservoirs of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(1): 75–82.
[10] 张莉,岳湘安,王友启. 基于非均质大模型的特高含水油藏提高采收率方法研究[J]. 石油钻探技术,2018,46(5):83–89. ZHANG Li, YUE Xiang’an, WANG Youqi. Research on large scale heterogeneous model based EOR methods for ultra-high water cut reservoirs[J]. Petroleum Drilling Techniques, 2018, 46(5): 83–89.
[11] 侯建锋,王友净,胡亚斐,等. 特低渗透油藏动态缝作用下的合理注水技术政策[J]. 新疆石油天然气,2016,12(3):19–24. doi: 10.3969/j.issn.1673-2677.2016.03.004 HOU Jianfeng, WANG Youjing, HU Yafei, et al. Reasonable waterflooding technical policy for extra low permeability reservoirs under dynamically fractures effect[J]. Xinjiang Oil & Gas, 2016, 12(3): 19–24. doi: 10.3969/j.issn.1673-2677.2016.03.004
[12] 张衍君,葛洪魁,徐田录,等. 体积压裂裂缝前端粉砂分布规律试验研究[J]. 石油钻探技术,2021,49(3):105–110. doi: 10.11911/syztjs.2021065 ZHANG Yanjun, GE Hongkui, XU Tianlu, et al. Experimental study on silt distribution law at the front end of fractures in volume fracturing[J]. Petroleum Drilling Techniques, 2021, 49(3): 105–110. doi: 10.11911/syztjs.2021065
[13] 周丹,熊旭东,何军榜,等. 低渗透储层多级转向压裂技术[J]. 石油钻探技术,2020,48(1):85–89. doi: 10.11911/syztjs.2019077 ZHOU Dan, XIONG Xudong, HE Junbang, et al. Multi-stage deflective fracturing technology for low permeability reservoir[J]. Petroleum Drilling Techniques, 2020, 48(1): 85–89. doi: 10.11911/syztjs.2019077
[14] 赵振峰,李楷,赵鹏云,等. 鄂尔多斯盆地页岩油体积压裂技术实践与发展建议[J]. 石油钻探技术,2021,49(4):85–91. doi: 10.11911/syztjs.2021075 ZHAO Zhenfeng, LI Kai, ZHAO Pengyun, et al. Practice and development suggestions for volumetric fracturing technology for shale oil in the Ordos Basin[J]. Petroleum Drilling Techniques, 2021, 49(4): 85–91. doi: 10.11911/syztjs.2021075