杨税务潜山油气藏大位移井钻井完井关键技术

陈新勇, 徐明磊, 马樱, 徐雅萍, 赵博, 韩煦

陈新勇, 徐明磊, 马樱, 徐雅萍, 赵博, 韩煦. 杨税务潜山油气藏大位移井钻井完井关键技术[J]. 石油钻探技术, 2021, 49(2): 14-19. DOI: 10.11911/syztjs.2021010
引用本文: 陈新勇, 徐明磊, 马樱, 徐雅萍, 赵博, 韩煦. 杨税务潜山油气藏大位移井钻井完井关键技术[J]. 石油钻探技术, 2021, 49(2): 14-19. DOI: 10.11911/syztjs.2021010
CHEN Xinyong, XU Minglei, MA Ying, XU Yaping, ZHAO Bo, HAN Xu. Drilling and Completion Technologies of Extended-Reach Wells in the Yangshuiwu Buried Hill Reservoir[J]. Petroleum Drilling Techniques, 2021, 49(2): 14-19. DOI: 10.11911/syztjs.2021010
Citation: CHEN Xinyong, XU Minglei, MA Ying, XU Yaping, ZHAO Bo, HAN Xu. Drilling and Completion Technologies of Extended-Reach Wells in the Yangshuiwu Buried Hill Reservoir[J]. Petroleum Drilling Techniques, 2021, 49(2): 14-19. DOI: 10.11911/syztjs.2021010

杨税务潜山油气藏大位移井钻井完井关键技术

基金项目: 中国石油重大科技专项项目“华北油田持续有效稳产勘探开发关键技术研究与应用”(编号:2017E-15)资助
详细信息
    作者简介:

    陈新勇(1986—),男,山东单县人,2010年毕业于中国矿业大学地质工程专业,2013年获中国石油大学(华东)油气井工程专业硕士学位,工程师,主要从事钻井工程方面的研究工作。E-mail:chenxinyong34@163.com。

  • 中图分类号: TE242

Drilling and Completion Technologies of Extended-Reach Wells in the Yangshuiwu Buried Hill Reservoir

  • 摘要: 为了解决杨税务潜山油气藏大位移井钻井完井中面临的摩阻扭矩大、井眼轨迹控制难度大、泥岩砾岩玄武岩地层钻速低、井底温度高和小间隙固井难度大等技术难点,结合区块地层特点,通过理论分析和模拟计算,优化了井身结构和井眼轨道,优选了井眼轨迹控制方式和钻井液体系,优化了钻井液性能,制定了提速和固井技术措施,形成了华北油田杨税务潜山油气藏大位移井钻井完井关键技术。该技术在T5X井和T101X井进行了现场试验,2口井钻井和完井均安全顺利,与未应用该技术的邻井相比机械钻速提高27.4%,钻井周期缩短19.7%。研究和现场试验结果表明,该技术可以解决华北油田杨税务潜山油气藏大位移井钻井完井中存在的技术难点,满足杨税务潜山油气藏安全高效钻井完井需求。
    Abstract: Drilling and completion operations in the extended-reach wells of the Yangshuiwu buried hill reservoir are facing technical challenges, such as high friction torque and bottom-hole temperature, difficult well trajectory control and small gaps in cementing, and low ROP in formations of mudstone, conglomerate, and basalt. In light of the formation characteristics, through theoretical analysis and simulation, the casing program and well trajectory were optimized, the well-trajectory control mode and the drilling fluid system were upgraded, and the performance of drilling fluid was improved. In addition, the technical measures for increasing ROP and cementing were introduced. As a result, a system of key drilling and completion technologies of extended-reach wells in the Yangshuiwu buried hill reservoir of the Huabei Oilfield was developed. The field tests of this technical system confirmed safe and smooth drilling and completion in Well T5X and Well T101X. Compared with the adjacent wells without the support of this system, the two test wells had a ROP increase of 27.4% and the drilling cycle decrease of 19.7%. The research and field tests demonstrated that this system can solve the technical difficulties encountered in the drilling and completion of extended-reach wells in the Yangshuiwu buried hill reservoir of the Huabei Oilfield, and can meet the requirements for safe and efficient drilling and completion in this area.
  • 图  1   水力振荡器

    Figure  1.   Hydraulic oscillator

    图  2   钻头流场模拟分析结果

    Figure  2.   Simulation and analysis results of the bit flow field

    图  3   扭力冲击器的结构

    1.中间轴;2.动力锤;3.启动器;4.涡轮系统;5.过滤系统;6.下轴承;7.上轴承

    Figure  3.   Structural diagram of torsion impactor

    图  4   井深5 425.00 m处顶替效率模拟曲线

    Figure  4.   Simulation curve of displacement efficiency at a depth of 5 425.00 m

    表  1   试验井和邻井钻井技术指标对比

    Table  1   Comparison of drilling technical indexes between test wells and adjacent wells

    井号完钻井深/m垂深/m造斜点井深/m水平位移/m最大井斜角/(°)钻井周期/d机械钻速/(m·h–1
    T5X6 207.005 410.671 405.052 166.8129.52176.966.63
    T101X5 960.005 527.961 520.622 042.9136.00122.428.14
    T2X5 930.005 600.463 200.001 170.3537.01186.385.73
    下载: 导出CSV
  • [1] 张以明,李拥军,崔树清,等. 杨税务潜山高温油气藏勘探突破的关键井筒技术[J]. 石油钻采工艺,2018,40(1):20–26.

    ZHANG Yiming, LI Yongjun, CUI Shuqing, et al. Key wellbore technologies for the exploration breakthrough of high-temperature oil and gas reservoirs in Yangshuiwu buried hill[J]. Oil Drilling & Production Technology, 2018, 40(1): 20–26.

    [2] 李云峰,徐吉,徐小峰,等. 南堡2号构造深层潜山水平井钻井完井技术[J]. 石油钻探技术,2018,46(2):10–16.

    LI Yunfeng, XU Ji, XU Xiaofeng, et al. Drilling and completion techniques for horizontal wells in the deep buried hills of the Nanpu No.2 Structure[J]. Petroleum Drilling Techniques, 2018, 46(2): 10–16.

    [3] 王波,王旭,邢志谦,等. 冀东油田人工端岛大位移井钻井完井技术[J]. 石油钻探技术,2018,46(4):42–46.

    WANG Bo, WANG Xu, XING Zhiqian, et al. Drilling and completion technologies of extended-reach wells in the artificial island of the Jidong Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(4): 42–46.

    [4] 王传鸿,邹刚,周歆,等. 自激式水力振荡器结构性能及其振动特性研究[J]. 石油机械,2020,48(11):16–21.

    WANG Chuanhong, ZOU Gang, ZHOU Xin, et al. Research on design features and vibration characteristics of self-excited hydraulic oscillator[J]. China Petroleum Machinery, 2020, 48(11): 16–21.

    [5] 聂云飞,朱渊,范萧,等. 自激式涡流控制水力振荡器研制与应用[J]. 石油钻探技术,2019,47(5):74–79.

    NIE Yunfei, ZHU Yuan, FAN Xiao, et al. Development and application of self-excited vortex control hydraulic oscillator[J]. Petroleum Drilling Techniques, 2019, 47(5): 74–79.

    [6] 王建龙,张展豪,冯强,等. 水力振荡器与液力推力器集成应用研究[J]. 石油机械,2017,45(4):44–47.

    WANG Jianlong, ZHANG Zhanhao, FENG Qiang, et al. Study on the integrated application of hydraulic oscillatorand hydraulic thruster[J]. China Petroleum Machinery, 2017, 45(4): 44–47.

    [7] 王建龙,许京国,杜强,等. 大港油田埕海2-2人工岛钻井提速提效关键技术[J]. 石油机械,2019,47(7):30–35.

    WANG Jianlong, XU Jingguo, DU Qiang, et al. Key technology for drilling speed and efficiency improvement on Chenghai 2-2 Artificial Island of Dagang Oilfield[J]. China Petroleum Machinery, 2019, 47(7): 30–35.

    [8] 陈新勇,张苏,付潇,等. 扭力冲击钻井工具模拟分析及现场试验[J]. 石油机械,2018,46(9):29–32.

    CHEN Xinyong, ZHANG Su, FU Xiao, et al. Simulation analysis and field test of torque impact drilling tool[J]. China Petroleum Machinery, 2018, 46(9): 29–32.

    [9] 李玮,李卓伦,刘伟卿,等. 扭转冲击提速工具在文安区块的现场应用[J]. 特种油气藏,2016,23(4):144–146. doi: 10.3969/j.issn.1006-6535.2016.04.034

    LI Wei, LI Zhuolun, LIU Weiqing, et al. Field application of torsion impact ROP-improvement tool in Block Wenan[J]. Special Oil & Gas Reservoirs, 2016, 23(4): 144–146. doi: 10.3969/j.issn.1006-6535.2016.04.034

    [10] 于雷,张敬辉,李公让,等. 低活度强抑制封堵钻井液研究与应用[J]. 石油钻探技术,2018,46(1):44–48.

    YU Lei, ZHANG Jinghui, LI Gongrang, et al. Research and application of plugging drilling fluid with low-activity and high inhibition properties[J]. Petroleum Drilling Techniques, 2018, 46(1): 44–48.

    [11] 杨文权,张宇,程智,等. 超高温钻井液在杨税务潜山深井中的应用[J]. 钻井液与完井液,2019,36(3):298–302. doi: 10.3969/j.issn.1001-5620.2019.03.006

    YANG Wenquan, ZHANG Yu, CHENG Zhi, et al. Application of an ultra-high temperature drilling fluid in deep well drilling in Yangshuiwu buried hill[J]. Drilling Fluid & Completion Fluid, 2019, 36(3): 298–302. doi: 10.3969/j.issn.1001-5620.2019.03.006

    [12] 宋洵成,王鹏,张宇,等. 安探4X井低固相超高温钻井液技术[J]. 钻井液与完井液,2018,35(2):40–43. doi: 10.3969/j.issn.1001-5620.2018.02.006

    SONG Xuncheng, WANG Peng, ZHANG Yu, et al. Low solids ultra-high temperature drilling fluid technology for Well Antan-4X[J]. Drilling Fluid & Completion Fluid, 2018, 35(2): 40–43. doi: 10.3969/j.issn.1001-5620.2018.02.006

    [13] 和建勇,李拥军,宋元洪,等. 华北油田杨税务潜山内固井技术[J]. 钻井液与完井液,2018,35(2):104–109. doi: 10.3969/j.issn.1001-5620.2018.02.017

    HE Jianyong, LI Yongjun, SONG Yuanhong, et al. Cementing technology for buried hill reservoirs in Block Yangshuiwu in Huabei Oilfield[J]. Drilling Fluid & Completion Fluid, 2018, 35(2): 104–109. doi: 10.3969/j.issn.1001-5620.2018.02.017

图(4)  /  表(1)
计量
  • 文章访问数:  575
  • HTML全文浏览量:  200
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-24
  • 修回日期:  2021-02-21
  • 网络出版日期:  2021-03-10
  • 刊出日期:  2021-04-08

目录

    /

    返回文章
    返回