轴扭复合冲击工具的研制与应用

刘书斌, 倪红坚, 张恒

刘书斌, 倪红坚, 张恒. 轴扭复合冲击工具的研制与应用[J]. 石油钻探技术, 2020, 48(5): 69-76. DOI: 10.11911/syztjs.2020072
引用本文: 刘书斌, 倪红坚, 张恒. 轴扭复合冲击工具的研制与应用[J]. 石油钻探技术, 2020, 48(5): 69-76. DOI: 10.11911/syztjs.2020072
LIU Shubin, NI Hongjian, ZHANG Heng. Development and Applications of a Compound Axial and Torsional Impact Drilling Tool[J]. Petroleum Drilling Techniques, 2020, 48(5): 69-76. DOI: 10.11911/syztjs.2020072
Citation: LIU Shubin, NI Hongjian, ZHANG Heng. Development and Applications of a Compound Axial and Torsional Impact Drilling Tool[J]. Petroleum Drilling Techniques, 2020, 48(5): 69-76. DOI: 10.11911/syztjs.2020072

轴扭复合冲击工具的研制与应用

基金项目: 国家自然科学基金青年基金项目“水平井钻柱仿蚯蚓振/蠕动载荷传递及控制机理研究”(编号:51704323)资助
详细信息
    作者简介:

    刘书斌(1988—),男,河南南阳人,2013年毕业于潍坊学院机械设计制造及其自动化专业,在读博士研究生,主要从事高效破岩工具的开发与破岩机理研究。E-mail:liushubinht@163.com

    通讯作者:

    倪红坚,nihj@upc.edu.cn

  • 中图分类号: TE921+.2

Development and Applications of a Compound Axial and Torsional Impact Drilling Tool

  • 摘要: 为提高PDC钻头破岩效率并减小钻具的粘滑振动,研制了一种轴扭复合冲击工具。该工具以自激振荡脉冲射流为能量来源,通过螺旋面结构将轴向冲击力转换为轴扭复合冲击力进行破岩,具有结构简单和轴向、扭向冲击力同步作用的特点。现场应用结果表明:与常规钻具相比,轴扭复合冲击工具的机械钻速提高了95.2%~193.8%,单只钻头进尺增加了46.4%~229.2%;与螺杆钻具相比,轴扭复合冲击工具的机械钻速提高了71.0%;与轴向冲击工具相比,轴扭复合冲击工具的机械钻速提高了66.3%,单只钻头进尺增加了194.0%;与扭向冲击工具相比,轴扭复合冲击工具的机械钻速提高了30.2%~46.8%,单只钻头进尺增加了17.2%~191.8%。研究表明,轴扭复合冲击工具可以提高破岩效率,减小硬地层的粘滑振动,破岩提速效果显著,具有推广应用价值。
    Abstract: To improve the rock-breaking efficiency of PDC bits and reduce stick-slip vibration, a compound axial and torsional impact tool was developed. This tool, characterized by a simple structure and the synchronous action of axial and torsional impacts, is used to break rocks. To do so, it used a self-excited oscillation pulse jet as its energy source, and converted axial impact force into compound axial and torsional impacts through helical surface structure. Field applications showed that: compared with conventional drilling tools, the ROP of this compound axial and torsional impact tool was increased by 95.2%–193.8%, and the footage of a single bit was increased by 46.4%–229.2%. Compared with PDM drills, the ROP of this tool was increased by 71.0% while compared with axial impact tools, the ROP of this tool was increased by 66.3%, and the footage of a single bit was increased by 194.0%. Compared with torsional impact tools, the ROP of this tool was increased by 30.2%–46.8%, and the footage of a single bit was increased by 17.2%–191.8%. The research results showed that the developed compound axial and torsional impact tool can improve rock-breaking efficiency and reduce the stick-slip vibration in hard formations. With its remarkable rock-breaking effects and ROP improvement, this tool is worth of application and widespread implementation.
  • 图  1   浅切削与深切削下的岩石破碎形态示意

    Figure  1.   Schematic diagram of rock breaking morphology under shallow and deep cutting actions

    图  2   粘滑振动下的破岩过程

    Figure  2.   Rock breaking process under stick-slip vibration

    图  3   扭转摆模型示意

    Figure  3.   Schemetic diagram of the torsional pendulum model

    图  4   转盘转速与钻头转速对比曲线

    Figure  4.   Comparison on the RPMs of rotary table and bit

    图  5   轴扭复合冲击工具结构示意

    1. 上接头;2. 自激振荡脉冲喷嘴;3. 固定套;4. 螺旋冲击座;5. 壳体;6. 下接头; 7. PDC钻头

    Figure  5.   Schematic diagram of a compound axial and torsional impact tool

    图  6   螺旋冲击面结构和冲击力计算模型

    Figure  6.   Structure of spiral impact surface and calculation model of impact forces

    图  7   准噶尔盆地应用井钻头进尺和机械钻速

    Figure  7.   Bit footage and ROP of wells using compound axial and torsional impact tools in Junggar Basin

    图  8   准噶尔盆地分地层平均机械钻速和单只钻头进尺对比

    Figure  8.   Comparison of average ROP and single bit footage in different strata in Junggar Basin

    图  9   轴扭复合冲击工具钻井所得岩屑与常规钻屑对比

    Figure  9.   Comparison of cuttings obtained from compound axial and torsional impact tool and conventional cuttings

    图  10   轴扭复合冲击工具应用井段和相邻井段的扭矩波动

    Figure  10.   Torque fluctuations of intervals using compound axial and torsional impact tool and the adjacent intervals

    图  11   轴扭复合冲击工具和螺杆钻具钻进产生的岩屑对比

    Figure  11.   Comparison of cuttings obtained from compound axial and torsional impact tool and PDM drills

    图  12   不同粒径岩屑质量占比

    Figure  12.   Weight proportion of cuttings of different sizes

    图  13   塔里木盆地二叠系平均机械钻速和单趟钻进尺

    Figure  13.   Average ROP and single trip footage in the Permian of Tarim Basin

    图  14   塔里木盆地石炭系及以下地层平均机械钻速和单趟钻进尺

    Figure  14.   Average ROP and single trip footage in the Carboniferous and lower strata of Tarim Basin

    表  1   轴扭复合冲击工具的关键技术参数

    Table  1   Key technical parameters of compound axial and torsionalimpact tool

    外径/
    mm
    螺旋面
    半径/mm
    压力损
    耗/MPa
    轴向冲击
    力/kN
    扭向冲击扭
    矩/(N·m)
    冲击频
    率/Hz
    最小最大
    177.820.0 79.01.4171 089560
    197.050.0 88.52.3252 097300
    203.250.0 88.52.3252 097300
    244.540.0112.52.0452 836420
    285.840.0130.02.0624 449420
    下载: 导出CSV

    表  2   应用井段与邻井相近井段实钻数据对比

    Table  2   Comparison of actual drilling data between intervals using compound axial and torsional impact tool and the adjacent intervals

    井号钻具井段/m钻压/kN钻具转速/
    (r·min–1
    钻井液排量/
    (L·s–1
    钻井液密度/
    (kg·L–1
    纯钻时间/h机械钻速/
    (m·h–1
    X-116H轴扭复合冲击工具4 897~5 241 80~12060~7032~341.24 60.05.73
    X-8H螺杆钻具4 902~5 24540~60200~24028~301.30121.42.82
    X-20H螺杆钻具4 915~5 24240~60200~24028~301.30105.53.10
    X-24H螺杆钻具4 849~5 24440~60200~25028~301.30 91.04.34
    X-2H常规钻具4 862~5 24740~6080~10028~301.25144.72.66
    X-3H常规钻具4 863~5 24740~6080~10027~381.24151.52.53
    X4H常规钻具4 930~5 26040~6070~75 28~301.30 84.23.92
    下载: 导出CSV

    表  3   几种冲击工具的性能参数和应用井的钻井参数

    Table  3   Performance parameters of several impact drilling tools and drilling parameters in their field applications

    工具类型地层工具性能参数钻井参数
    工具压降/
    MPa
    冲击频率/
    Hz
    轴向冲击力/
    kN
    扭向冲击力/
    (N·m)
    钻压/kN钻具转速/
    (m·h–1
    钻井液密度/
    (kg·L–1
    排量/
    (L·s–1
    轴向冲击
    工具
    二叠系2.0~3.017.0~23.020100~140601.2536
    扭向冲击
    工具
    二叠系1.7~2.712.5~25.01 627100~120601.2535
    石炭系及
    以下
    2.4~4.114.0~30.01 22080~120701.2732~37
    轴扭复合
    冲击工具
    二叠系1.5~2.440.0~60.0231 350100~140601.2536
    石炭系及以下2.5~4.040.0~60.0121 10060~10050~601.3028
    下载: 导出CSV
  • [1] 王德余,李根生,史怀忠,等. 高效破岩新方法进展与应用[J]. 石油机械, 2012, 40(6): 1–6.

    WANG Deyu, LI Gensheng, SHI Huaizhong, et al. Progress of the high-efficiency rock-breaking method[J]. China Petroleum Machi-nery, 2012, 40(6): 1–6.

    [2]

    KHORSHIDIAN H, MOZAFFARI M, BUTT S D. The role of natural vibrations in penetration mechanism of a single PDC cutter[R]. ARMA-2012-402, 2012.

    [3]

    DEEN C A, WEDEL R J, NAYAN A, et al. Application of a torsional impact hammer to improve drilling efficiency[R]. SPE 147193, 2011.

    [4]

    OSTASEVICIUS V, GAIDYS R, RIMKEVICIENE J, et al. An approach based on tool mode control for surface roughness reduction in high-frequency vibration cutting[J]. Journal of Sound and Vibration, 2010, 329(23): 4866–4879. doi: 10.1016/j.jsv.2010.05.028

    [5]

    LI X B, SUMMERS D A, RUPERT G, et al. Experimental investigation on the breakage of hard rock by the PDC cutters with combined action modes[J]. Tunnelling and Underground Space Technology, 2001, 16(2): 107–114. doi: 10.1016/S0886-7798(01)00036-0

    [6]

    WANG Peng, NI Hongjian, WANG Ruihe. A novel vibration drilling tool used for reducing friction and improve the penetration rate of petroleum drilling[J]. Journal of Petroleum Science and Engineering, 2018, 165: 436–443. doi: 10.1016/j.petrol.2018.02.053

    [7] 祝效华,刘伟吉. 单齿高频扭转冲击切削的破岩及提速机理[J]. 石油学报, 2017, 38(5): 578–586. doi: 10.7623/syxb201705011

    ZHU Xiaohua, LIU Weiji. The rock breaking and ROP rising mechanism for single-tooth high-frequency torsional impact cutting[J]. Acta Petrolei Sinica, 2017, 38(5): 578–586. doi: 10.7623/syxb201705011

    [8] 柳贡慧,李玉梅,李军,等. 复合冲击破岩钻井新技术[J]. 石油钻探技术, 2016, 44(5): 10–15.

    LIU Gonghui, LI Yumei, LI Jun, et al. New technology with composite percussion drilling and rock breaking[J]. Petroleum Drilling Techniques, 2016, 44(5): 10–15.

    [9]

    POWELL S W, HERRINGTON D, BOTTON B, et al. Fluid hammer increases PDC performance through axial and torsional energy at the bit[R]. SPE 166433, 2013.

    [10]

    LIU Shubin, NI Hongjian, WANG Xueying, et al. Rock-breaking mechanism study of axial and torsional impact hammer and its application in deep wells[R]. SPE 191077, 2018.

    [11] 倪红坚,韩来聚,马清明,等. 水力脉冲诱发井下振动钻井工具研究[J]. 石油钻采工艺, 2006, 28(2): 15–17, 20. doi: 10.3969/j.issn.1000-7393.2006.02.005

    NI Hongjian, HAN Laiju, MA Qingming, et al. Study on downhole vibration drilling tool induced by hydropulse[J]. Oil Drilling & Production Technology, 2006, 28(2): 15–17, 20. doi: 10.3969/j.issn.1000-7393.2006.02.005

    [12] 雷鹏,倪红坚,王瑞和,等. 自激振荡式旋冲工具在深井超深井中的试验应用[J]. 石油钻探技术, 2013, 41(6): 40–43. doi: 10.3969/j.issn.1001-0890.2013.06.008

    LEI Peng, NI Hongjian, WANG Ruihe, et al. Field test of self-excited vibration rotary percussion drilling tool in deep and ultra-deep wells[J]. Petroleum Drilling Techniques, 2013, 41(6): 40–43. doi: 10.3969/j.issn.1001-0890.2013.06.008

    [13]

    RICHARD T, DAGRAIN F, POYOL E, et al. Rock strength determination from scratch tests[J]. Engineering Geology, 2012, 147: 91–100.

    [14] 刘鹏飞.扭转冲击影响PDC钻头粘滑振动的机理研究[D].青岛: 中国石油大学(华东), 2017.

    LIU Pengfei. Study on the influence mechanism of PDC bit stick-slip vibration under torsional impact[D]. Qingdao: China University of Petroleum (East China), 2017.

    [15]

    KYLLINGSTAD A, HALSEY G W. A study of slip/stick motion of the bit[J]. SPE Drilling Engineering, 1988, 3(4): 369–373. doi: 10.2118/16659-PA

    [16] 熊继有,蒲克勇,周健. 库车坳陷山前构造超深井岩石可钻性研究[J]. 天然气工业, 2009, 29(11): 59–61. doi: 10.3787/j.issn.1000-0976.2009.11.018

    XIONG Jiyou, PU Keyong, ZHOU Jian. Rock drillability investigation for ultra-deep well drilling at thrust structure of Kuqa depression[J]. Natural Gas Industry, 2009, 29(11): 59–61. doi: 10.3787/j.issn.1000-0976.2009.11.018

    [17] 滕学清,文志明,王克雄,等. 塔中岩石可钻性剖面建立和钻头选型研究[J]. 西部探矿工程, 2010, 22(11): 43–45. doi: 10.3969/j.issn.1004-5716.2010.11.014

    TENG Xueqing, WEN Zhiming, WANG Kexiong, et al. Research on drillability sections of rocks and bit selection in Tazhong Area[J]. West-China Exploration Engineering, 2010, 22(11): 43–45. doi: 10.3969/j.issn.1004-5716.2010.11.014

    [18] 白萍萍.准噶尔盆地中部区块钻头选型[D].青岛: 中国石油大学(华东), 2014.

    BAI Pingping. Bit selection in the center of Junggar Basin[D]. Qingdao: China University of Petroleum (East China), 2014.

图(14)  /  表(3)
计量
  • 文章访问数:  911
  • HTML全文浏览量:  208
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-29
  • 修回日期:  2020-06-09
  • 网络出版日期:  2020-07-13
  • 刊出日期:  2020-09-24

目录

    /

    返回文章
    返回