顺北油气田超深碳酸盐岩储层深穿透酸压技术

蒋廷学, 周珺, 贾文峰, 周林波

蒋廷学, 周珺, 贾文峰, 周林波. 顺北油气田超深碳酸盐岩储层深穿透酸压技术[J]. 石油钻探技术, 2019, 47(3): 140-147. DOI: 10.11911/syztjs.2019058
引用本文: 蒋廷学, 周珺, 贾文峰, 周林波. 顺北油气田超深碳酸盐岩储层深穿透酸压技术[J]. 石油钻探技术, 2019, 47(3): 140-147. DOI: 10.11911/syztjs.2019058
JIANG Tingxue, ZHOU Jun, JIA Wenfeng, ZHOU Linbo. Deep Penetration Acid-Fracturing Technology for Ultra-Deep Carbonate Oil & Gas Reservoirs in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 140-147. DOI: 10.11911/syztjs.2019058
Citation: JIANG Tingxue, ZHOU Jun, JIA Wenfeng, ZHOU Linbo. Deep Penetration Acid-Fracturing Technology for Ultra-Deep Carbonate Oil & Gas Reservoirs in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 140-147. DOI: 10.11911/syztjs.2019058

顺北油气田超深碳酸盐岩储层深穿透酸压技术

基金项目: 国家科技重大专项“超深井碳酸盐岩储层改造及测试关键技术”(编号:2017ZX05005–005–004)与中国石化科技攻关项目“顺北高温高压碳酸盐岩储层改造技术”(编号:P17004–2)、“顺北1区断溶体油藏储层改造技术研究与应用”(编号:P18022–2)联合资助
详细信息
    作者简介:

    蒋廷学(1969—),男,江苏东海人,1991年毕业于石油大学(华东)采油工程专业,2007年获中国科学院渗流流体力学研究所流体力学专业博士学位,教授级高级工程师,主要从事水力压裂机理、优化设计方法、现场试验及后评估方面的研究工作。系本刊编委。E-mail:jiangtx.sripe@sinopec.com

  • 中图分类号: TE357.2

Deep Penetration Acid-Fracturing Technology for Ultra-Deep Carbonate Oil & Gas Reservoirs in the Shunbei Oil and Gas Field

  • 摘要:

    顺北油气田碳酸盐岩储层具有超深、高温和高破裂压力等特点,酸压改造时存在酸蚀裂缝短、导流能力递减快等问题,为此,提出了应用深穿透酸压技术对超深碳酸盐岩储层进行改造的技术思路,并进行了技术攻关研究。合成了酸用稠化剂、高温缓蚀剂,研制了抗高温清洁酸,并进行了酸液非均匀刻蚀导流能力试验,分析了在闭合应力为20~90 MPa时仅注入清洁酸、仅注入胶凝酸和先注入清洁酸再注入胶凝酸3种注酸方式下裂缝的导流能力;同时,研究了酸液非均匀驱替流动机理,优化了非均匀刻蚀酸压工艺参数。研究发现,采用“清洁酸+胶凝酸”组合注入模式,不仅酸蚀裂缝导流能力有较大幅度提高,有效缝长也增加近1倍。超深碳酸盐岩储层深穿透酸压技术在顺北油气田进行了5井次现场试验,酸压施工成功率及有效率均达到100%,酸压后平均日产油107.7 m3,平均酸蚀缝长133.20 m,取得了明显的储层改造效果。研究认为,顺北油气田超深碳酸盐岩储层深穿透酸压技术可极大改善超深碳酸盐岩酸压效果,可为国内类似储层的酸压改造提供借鉴。

    Abstract:

    Carbonate reservoirs in the Shunbei Oil and Gas Field are characterized by ultra-deep, high temperature and high fracturing pressure gradient, which pose problems in short acid-etched fractures and rapid conductivity decline. In order to solve these problems, a team studied a deep penetration acid-fracturing technology for ultra-deep carbonate reservoirs, and they proposed a deep penetration acid-fracturingtechnique. Using a synthetic acid thickener and high temperature corrosion inhibitor, a high temperature resistant clean acid was developed. The acid fluid non-uniform etching conductivity test was carried out, and fracture conductivities with clean acid, gelled acid, and clean acid followed by gelled acid were analyzed at a closure stress of 20–90 MPa, respectively. The mechanism of the non-uniform displacement of acid fluid was studied, and the acid-fracturing process parameters of non-uniform etching were optimized. The study suggests that "clean acid + gelled acid" combined injection can greatly improve the conductivity of acid-etching fractures as well as nearly doubling effective fracture length. This new deep penetration acid-fracturing technology has been applied in 5 wells in the ultra-deep carbonate reservoir in Shunbei Oil and Gas Field. The success rate and effectiveness of the acid-fracturing operation reached 100% with post-frac production rate 107.7 m3/d, and average length 133.20 m. Consequently, this acid-fracturing technology can greatly improve the acid-fracturing effect in ultra-deep carbonate reservoirs, which provides a reference or best practices guidance in the acid-fracturing stimulation of similar reservoirs in China.

  • 图  1   酸用稠化剂分子结构

    Figure  1.   Molecular structure of acid thickener

    图  2   3种注酸方式下的裂缝导流能力对比

    Figure  2.   Comparison on the conductivities of fractures under three acid injection modes

    图  3   不同注酸方式下的酸蚀有效缝长对比曲线

    Figure  3.   Comparison curves of the effective length of acid etched fractures under different acid injection modes

    图  4   用不同黏度比液体驱替时裂缝内酸液的分布情况

    Figure  4.   Distribution of acid fluid when displaced with fluids at different viscosity ratios

    图  5   不同黏度比下裂缝中酸液的非均匀程度

    Figure  5.   Non-uniformity of acid fluid in fractures at different viscosity ratios

    图  6   高黏度和低黏度酸液排量比对裂缝中酸液分布的影响

    Figure  6.   Effect of the flowrate ratio of high/low viscosity acid fluids on the distribution of acid in fractures

    图  7   高、低黏度酸液液量比对裂缝中酸液分布情况的影响

    Figure  7.   Effect of the displacement volumes of high/low viscosity acid fluids on the distribution of acid in fractures

    图  8   “压裂液+酸液”与“酸液+酸液”二级注入模式下的缝宽和导流能力

    Figure  8.   Fracture width and conductivity under the secondary injection modes of “acid + fracturing fluid” and “acid + acid”

    图  9   “压裂液+酸液”与“酸液+酸液”二级注入模式下的缝长和缝高

    Figure  9.   Fracture length and height under the secondary injection modes of “acid + fracturing fluid” and “acid + acid”

    图  10   X1井酸压后裂缝扩展情况模拟及G函数分析结果

    Figure  10.   Simulation of fracture propagation after acid fracturing and the results of G function analysis in Well X1

    表  1   顺北油气田超深碳酸盐岩储层深穿透酸压技术试验效果

    Table  1   Experimental results of deep penetration acid-fracturing technology in ultra-deep carbonate reservoirs of the Shunbei Oil and Gas Field

    井号储层垂深/m储层温度/℃酸蚀缝长/m初期产量/(t·d–1
    X17 824.00162143.7121.6
    X27 647.00157137.8142.7
    X37 766.00166125.989.9
    X47 386.00153125.873.9
    X57 654.00162132.6110.5
    下载: 导出CSV
  • [1] 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2): 207–216.

    JIAO Fangzheng. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei Area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207–216.

    [2] 邓尚, 李慧莉, 张仲培, 等. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J]. 石油与天然气地质, 2018, 39(5): 878–888.

    DENG Shang, LI Huili, ZHANG Zhongpei, et al. Characteristics of differential activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei Area and its surroundings, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5): 878–888.

    [3] 刘哲. 顺北弱挥发性碳酸盐岩油藏合理开发方式研究[D]. 成都: 成都理工大学, 2018.

    LIU Zhe. The reasonable development mode of weak volatile oil and carbonate reservoir in Shunbei Zone[D]. Chengdu: Chengdu University of Technology, 2018.

    [4] 刘建坤,蒋廷学,周林波,等. 碳酸盐岩储层多级交替酸压技术研究[J]. 石油钻探技术, 2017, 45(1): 104–111.

    LIU Jiankun, JIANG Tingxue, ZHOU Linbo, et al. Multi-stage alternative acid fracturing technique in carbonate reservoirs stimulation[J]. Petroleum Drilling Techniques, 2017, 45(1): 104–111.

    [5] 王永辉, 李永平, 程兴生, 等. 高温深层碳酸盐岩储层酸化压裂改造技术[J]. 石油学报, 2012, 33(supplement 2): 166–173.

    WANG Yonghui, LI Yongping, CHENG Xingsheng, et al. A new acid fracturing technique for carbonate reservoirs with high-temperature and deep layer[J]. Acta Petrolei Sinica, 2012, 33(supplement 2): 166–173.

    [6] 张义, 赵海洋, 张烨. 超深高温高破裂压力储层酸压关键技术[J]. 石油钻采工艺, 2012, 34(2): 74–76. doi: 10.3969/j.issn.1000-7393.2012.02.020

    ZHANG Yi, ZHAO Haiyang, ZHANG Ye. Key technologies of acid-fracturing for ultra-deep reservoirs with high temperature and high fracture pressure[J]. Oil Drilling & Production Technology, 2012, 34(2): 74–76. doi: 10.3969/j.issn.1000-7393.2012.02.020

    [7] 王洋,袁清芸,李立. 塔河油田碳酸盐岩储层自生酸深穿透酸压技术[J]. 石油钻探技术, 2016, 44(5): 90–93.

    WANG Yang, YUAN Qingyun, LI Li. Deep penetrating acid fracturing involving self-generated acid in carbonate reservoirs of the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(5): 90–93.

    [8] 何青, 李克智, 徐兵威, 等. 致密碳酸盐岩气藏前置酸加砂酸压工艺研究及应用[J]. 钻采工艺, 2014, 37(5): 71–73. doi: 10.3969/J.ISSN.1006-768X.2014.05.23

    HE Qing, LI Kezhi, XU Bingwei, et al. Research and application of pad acid sand fracturing technology tight carbonate reservoir[J]. Drilling & Production Technology, 2014, 37(5): 71–73. doi: 10.3969/J.ISSN.1006-768X.2014.05.23

    [9] 李小刚, 杨兆中, 陈锐, 等. 前置液酸压缝中酸液指进的物模与分形研究[J]. 西南石油大学学报, 2007, 29(6): 105–108. doi: 10.3863/j.issn.1674-5086.2007.06.025

    LI Xiaogang, YANG Zhaozhong, CHEN Rui, et al. Physical simulation and fractal feactures of acid fingering in acid fracturing treatment[J]. Journal of Southwest Petroleum University, 2007, 29(6): 105–108. doi: 10.3863/j.issn.1674-5086.2007.06.025

    [10] 李小蓉. 白云岩储层多级交替注入酸压设计计算软件研究[J]. 钻采工艺, 2000, 23(4): 53–55, 73.

    LI Xiaorong. Study on acid fracturing design software in alternate injection of dolomite reservoir[J]. Drilling & Production Technology, 2000, 23(4): 53–55, 73.

    [11] 王栋, 徐心茹, 杨敬一, 等. 普光气田多级交替注入闭合酸压技术及其应用[J]. 油气地质与采收率, 2012, 19(6): 108–110. doi: 10.3969/j.issn.1009-9603.2012.06.026

    WANG Dong, XU Xinru, YANG Jingyi, et al. Multistage alternating injection closed acid fracturing technology and its applicationgs in Puguang Gas Field[J]. Petroleum Geology and Recovery Efficiency, 2012, 19(6): 108–110. doi: 10.3969/j.issn.1009-9603.2012.06.026

    [12] 李小刚, 杨兆中, 蒋海, 等. 酸压裂缝内酸液指进的计算机模拟与分形研究[J]. 西安石油大学学报(自然科学版), 2008, 23(5): 65–69. doi: 10.3969/j.issn.1673-064X.2008.05.017

    LI Xiaogang, YANG Zhaozhong, JIANG Hai, et al. Computer simulation and fractal study of the fingering of the acid in an acid fracturing fracture[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2008, 23(5): 65–69. doi: 10.3969/j.issn.1673-064X.2008.05.017

    [13] 杨兆中, 李小刚, 蒋海, 等. 指进现象模拟研究的回顾与展望[J]. 西南石油大学学报(自然科学版), 2010, 32(1): 85–88. doi: 10.3863/j.issn.1674-5086.2010.01.015

    YANG Zhaozhong, LI Xiaogang, JIANG Hai, et al. Review and prospect of fingering phenomenon simulation[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2010, 32(1): 85–88. doi: 10.3863/j.issn.1674-5086.2010.01.015

    [14] 蒋廷学, 丁云宏, 李治平, 等. 活性水携砂指进压裂的优化设计方法[J]. 石油钻探技术, 2010, 38(3): 87–91. doi: 10.3969/j.issn.1001-0890.2010.03.020

    JIANG Tingxue, DING Yunhong, LI Zhiping, et al. Optimization and applications of active water fingering fracturing technique[J]. Petroleum Drilling Techniques, 2010, 38(3): 87–91. doi: 10.3969/j.issn.1001-0890.2010.03.020

    [15] 徐中良, 戴彩丽, 赵明伟, 等. 酸压用交联酸的研究进展[J]. 应用化工, 2017, 46(12): 2424–2427. doi: 10.3969/j.issn.1671-3206.2017.12.034

    XU Zhongliang, DAI Caili, ZHAO Mingwei, et al. Research and application progress of crosslinked gelled acid[J]. Applied Chemical Industry, 2017, 46(12): 2424–2427. doi: 10.3969/j.issn.1671-3206.2017.12.034

    [16] 贾文峰, 任倩倩, 王旭, 等. 高温携砂酸液体系及其性能评价[J]. 钻井液与完井液,, 2017, 34(4): 96–100.

    JIA Wenfeng, REN Qianqian, WANG Xu, et al. A high temperature sand carrying acid and its performance evaluation[J]. Drilling Fluid & Completion Fluid, 2017, 34(4): 96–100.

图(10)  /  表(1)
计量
  • 文章访问数:  2846
  • HTML全文浏览量:  1197
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-07
  • 网络出版日期:  2019-05-13
  • 刊出日期:  2019-04-30

目录

    /

    返回文章
    返回