The Key Fundamentals for the Efficient Exploitation of Shale Oil and Gas and Its Related Challenges
-
摘要: 为更好地指导我国页岩气资源高效开发,在概述我国页岩气资源和开采现状的基础上,从地质特征预测、安全快速钻井、环保高效开采等方面系统总结了我国页岩气开采面临的工程地质难题,指出页岩非线性工程地质力学特征与预测理论、多重耦合下的页岩油气安全优质钻井理论、页岩地层动态随机裂缝控制机理与无水压裂技术、页岩油气多尺度渗流特征与开采理论等是需要重点解决的关键理论问题,钻采过程中页岩储层物理力学化学特征演化规律与数学表征,多场耦合条件下非连续页岩与钻井完井流体作用机理,页岩地层动态随机裂缝控制、长效导流机制与无水压裂技术,页岩微纳尺度吸附/解吸机制、尺度升级及多场耦合的多相渗流理论等是亟需解决的关键前沿理论问题,并针对各前沿关键力学问题综述了研究进展和发展趋势,对促进我国页岩油气的科学、有效开发具有一定的借鉴作用。Abstract: This paper identifies and discusses the multiple geologic engineering challenges involved in shale gas exploitation which include reservoir characterization, safe and fast drilling, environmentally-friendly and efficient exploitation, and it puts them within a context of China’s experience in exploring for and exploiting shale gas.The paper elaborates upon the key fundamentals, which include geologic mechanical behavior and prediction theories of non-linear shale engineering, safe and quality shale oil and gas well drilling theories based on multiple coupling, dynamic and random fracture control mechanisms and non-aqueous fracturing technologies of shale beds, and multiscale seepage characteristics and exploitation theories of shale oil and gas. The following advanced theoretical issues should be solved as soon as possible. It was necessary to investigate the evolution rules of physical, chemical and mechanical properties of shale reservoirs and carry out mathematical characterization, analyze the interaction between discontinuous surrounding rocks and drilling and completion fluids under multiple coupling conditions, develop dynamic and random fracture control methods, long-term effective diverting mechanisms and non-aqueous fracturing technologies for shale reservoirs, explore micro-nano scale adsorption and desorption mechanisms of shale, and study multi-phase seepage theories with upscaling and multiple coupling. The paper concludes with a summary of research progress and development trends in the key advanced mechanical issues.This paper serves as a reference and guidance for the scientific and efficient development of shale oil and gas in China.
-
Keywords:
- shale oil and gas /
- drilling /
- seepage /
- reservoir stimulation
-
-
[1] 潘潇.国际地质新动态[J].资源环境与工程,2014,28(5):762. Pan Xiao.The new development of international geology[J].Resources Environment Engineering,2014,28(5):762. [3] 赵常青,谭宾,曾凡坤,等.长宁-威远页岩气示范区水平井固井技术[J].断块油气田,2014,21(2):256-258. Zhao Changqing,Tan Bin,Zeng Fankun,et al.Cementing technology of horizontal well in Changning-Weiyuan shale gas reservoir[J].Fault-Block Oil and Gas Field,2014,21(2):256-258. [4] 周德华,焦方正,贾长贵,等.JY1HF页岩气水平井大型分段压裂技术[J].石油钻探技术,2014,42(1):75-80. Zhou Dehua,Jiao Fangzheng,Jia Changgui,et al.Large-scale multi-stage hydraulic fracturing technology for shale gas horizontal Well JY1HF[J].Petroleum Drilling Techniques,2014,42(1):75-80. [5] 任勇,钱斌,张剑,等.长宁地区龙马溪组页岩气工厂化压裂实践与认识[J].石油钻采工艺,2015,37(4):96-99. Ren Yong,Qian Bin,Zhang Jian,et al.Practice and understanding of industrial fracturing for shale gas of Longmaxi Formation in Changning region[J].Oil Drilling Production Technology,2015,37(4):96-99. [6] 路保平.中国石化页岩气工程技术进步及展望[J].石油钻探技术,2013,41(5):1-8. Lu Baoping.Sinopec engineering technical advance and its developing tendency in shale gas[J].Petroleum Drilling Techniques,2013,41(5):1-8. [7] 葛洪魁,王小琼,张义.大幅度降低页岩气开发成本的技术途径[J].石油钻探技术,2013,41(6):1-5. Ge Hongkui,Wang Xiaoqiong,Zhang Yi.A technical approach to reduce shale gas development cost[J].Petroleum Drilling Techniques,2013,41(6):1-5. [8] 薛承瑾.国内页岩气有效开采值得关注的几个问题[J].石油钻探技术,2012,40(4):1-6. Xue Chengjin.Noteworthy issues on effective production of shale gas resource in China[J].Petroleum Drilling Techniques,2012,40(4):1-6. [9] 曾义金.页岩气开发的地质与工程一体化技术[J].石油钻探技术,2014,42(1):1-6. Zeng Yijin.Integration technology of geology engineering for shale gas development[J].Petroleum Drilling Techniques,2014,42(1):1-6. [10] 陈平,刘阳,马天寿.页岩气"井工厂"钻井技术现状及展望[J].石油钻探技术,2014,42(3):1-7. Chen Ping,Liu Yang,Ma Tianshou.Status and prospect of multi-well pad drilling technology in shale gas[J].Petroleum Drilling Techniques,2014,42(3):1-7. [11] 薛承瑾.页岩气压裂技术现状及发展建议[J].石油钻探技术,2011,39(3):24-29. Xue Chengjin.Technical advance and development proposals of shale gas fracturing[J].Petroleum Drilling Techniques,2011,39(3):24-29. [12] 蒋廷学,卞晓冰,苏瑗,等.页岩可压性指数评价新方法及应用[J].石油钻探技术,2014,42(5):16-20. Jiang Tingxue,Bian Xiaobing,Su Yuan,et al.A new method for evaluating shale fracability index and its application[J].Petroleum Drilling Techniques,2014,42(5):16-20. [13] Rickman R,Mullen M,Petre E,et al.A practical use of shale petrophysics for stimulation design optimization:all shale plays are not clones of the Barnett Shale[R].SPE 115258,2008.
[14] Boris Tarasov,Yves Potvin.Universal criteria for rock brittleness estimation under triaxial compression[J].International Journal of Rock Mechanics and Mining Sciences,2013,59:57-69.
[15] 李庆辉,陈勉,金衍,等.页岩脆性的室内评价方法及改进[J].岩石力学与工程学报,2012,31(8):1680-1685. LiQinghui,Chen Mian,Jin Yan,et al.Indoor evaluation method for shale brittleness and improvement[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(8):1680-1685. [16] Hyunil J.Optimizing fracture spacing to induce complex fractures in a hydraulically fractured horizontal wellbore[R].SPE154930,2012.
[17] Bruce R M,Lucas W B.A discrete fracture network model for hydraulically induced fractures:theory,parametric and case studies[R].SPE140514,2011.
[18] Thomsen L.Weakelastic anisotropy[J].Geophysics,1986,51(10) :1954-1966.
[19] Berryman J G.Exact seismic velocities for transversely isotropic media and extended Thomsen formulas for stronger anisotropies[J].Geophysics,2008,73(1):1-10.
[20] 胡起,陈小宏,李景叶.基于各向异性岩石物理模型的页岩气储层横波速度预测[J].石油物探,2014,53(3):254-261. Hu Qi,Chen Xiaohong,Li Jingye.Shear wave velocity prediction for shale gas reservoirs based onanisotropic rock physics model[J].Geophysical prospecting for petroleum,2014,53(3):254-261. [21] Xu Weiya,Zhang Jiuchang,Wang Rubin,et al.An elasto-plastic model and its return mapping scheme for anisotropic rocks[C]//Yang Qiang,Zhang Jianmin,Zheng Hong,et al.Constitutive modeling of geomaterials:advances and new applications.Berlin:Springer Berlin Heidelberg,2013:371-380.
[22] Tiryaki B.Evaluation of theindirect measures of rock brittleness and fracture toughness in rock cutting[J].Journal of The South African Institute of Mining And Metallurgy,2006,106(6):407-424.
[23] Yu M,Chen G,Chenevert M,et al.Chemical and thermal effects on wellbore stability of shale formations[R].SPE 71366,2011.
[24] 金衍,陈勉.水敏性泥页岩地层临界坍塌时间的确定方法[J].石油钻探技术,2004,32(2):12-14. Jin Yan,Chen Mian.A method for determining the critical time of wellbore instability at water-sensitive shale formations[J].Petroleum Drilling Techniques,2004,32(2):12-14. [25] Ghassemi A,Tao Q,Diek A.Influence of coupled chemo-poro-thermoelastic processes on pore pressure and stress distributions around a wellbore in swelling shale[J].Journal of Petroleum Science and Engineering,2009,67(1):57-64.
[26] Wang Q,Chen Z,Ma P,et al.Analysis of effect factor in shale wellbore stability[R].ARMA 2013-504,2013.
[27] Liang Chuan,Chen Mian,Lu Baoping,et al.The study of nano sealing to improve the brittle shale wellbore stability under dynamic load[R].OTC 24919,2014.
[28] Siddiqui M A,Nasr-EI-Din H A.Evaluation of special enzymes as a means to remove formation damage induced by drill-in fluids in horizontal gas wells in tight reservoirs[R].SPE 81455,2003.
[29] Lakatos I J,Bodi T,Lakatos-Szabo J,et al.Mitigation of formation damage caused by water-based drilling fluid in unconventional gas reservoirs[R].SPE 127999,2010.
[30] Sahai R,Miskimins J L,Olson K E.Laboratory results of proppant transport in complex fracture systems[R].SPE 168579,2014.
[31] Guo Jianchun,Liu Yuxuan.Modeling of proppant embedment:elastic deformation and creep deformation[R].SPE 157449,2012.
[32] Deng Shouchun,Li Haibo,Ma Guowei,et al.Simulation of shale-proppant interaction in hydraulic fracturing by the discrete element method[J].International Journal of Rock Mechanics and Mining Sciences,2014,70:219-228.
[33] Wu Ruiting,Kresse O,Weng Xiaowei,et al.Modeling of interaction of hydraulic fractures in complex fracture networks[R].SPE 152052,2012.
[34] Cheng Yueming.Mechanical interaction of multiple fractures-exploring impacts of the selection of the spacing/number of perforation clusters on horizontal shale-gas wells[J].SPE Journal,2012,17(4):992-1001.
[35] Altmann J B,Müller T M,Müller B I R,et al.Poroelastic contribution to the reservoir stress path[J].International Journal of Rock Mechanics and Mining Sciences,2010,47(7):1104-1113.
[36] 韩烈祥,朱丽华,孙海芳,等.LPG 无水压裂技术[J].天然气工业,2014,34(6):48-54. Han Liexiang,Zhu Lihua,Sun Haifang,et al.LPG waterless fracturing technology[J].Natural Gas Industry,2014,34(6):48-54. [37] 宋振云,苏伟东,杨延增,等.CO2干法加砂压裂技术研究与实践[J].天然气工业,2014,34(6):55-59. Song Zhenyun,Su Weidong,Yang Yanzeng,et al.Experimental studies of CO2/sanddry-fracprocess[J].Natural Gas Industry,2014,34(6):55-59. [38] 林英松,刘兆年,秦涛.层内爆炸后储层裂缝分析方法研究[J].断块油气田,2006,13(1):44-46. Lin Yingsong,Liu Zhaonian,Qin Tao.Analysis methods of reservoir fracture after exploding in fracture[J].Fault-Block Oil and Gas Field,2006,13(1):44-46. [39] 徐鹏,刘新云,石李保.地应力对爆炸压裂影响规律的数值模拟研究[J].石油钻探技术,2013,41(1):65-69. Xu Peng,Liu Xinyun,Shi Libao.Numerical simulation for the effect of ground stress on explosive fracturing[J].Petroleum Drilling Techniques,2013,41(1):65-69. [40] 姚军,孙海,黄朝琴,等.页岩气藏开发中的关键力学问题[J].中国科学:物理学力学天文学,2013,43(12):1527-1547. Yao Jun,Sun Hai,Huang Zhaoqin,et al.Key mechanical problems in the development of shale gas reservoirs[J].ScientiaSinica:Physica,Mechanica Astronomica,2013,43(12):1527-1547. [41] 孙海,姚军,张磊,等.基于孔隙结构的页岩渗透率计算方法[J].中国石油大学学报:自然科学版,2014,38(2):92-98. Sun Hai,Yao Jun,Zhang Lei,et al.A computing method of shale permeability based on pore structures[J].Journal of China University of Petroleum:Edition of Natural Science,2014,38(2):92-98. -
期刊类型引用(44)
1. 赵金洲,雍锐,胡东风,佘朝毅,付永强,吴建发,蒋廷学,任岚,周博,林然. 中国深层—超深层页岩气压裂:问题、挑战与发展方向. 石油学报. 2024(01): 295-311 . 百度学术
2. 王利,南亚坤,许朔,曹运兴,田林,张军胜,石玢. 水力压裂体积张开度-应力扰动本构关系及压裂效果调控. 力学学报. 2024(07): 2150-2163 . 百度学术
3. Jinzhou Zhao,Tong Wu,Wanfen Pu,Du Daijun,Qingyuan Chen,Bowen Chen,Jintao Li,Yitao Huang. Application status and research progress of CO_2 fracturing fluid in petroleum engineering: A brief review. Petroleum. 2024(01): 1-10 . 必应学术
4. 王溯,陈勉,吕嘉昕. 水力压裂多裂缝扩展诱发光纤应变演化试验研究. 石油机械. 2024(08): 101-107 . 百度学术
5. 王溯,陈勉,吕嘉昕,郝亚龙,初京义. 水平井水力压裂裂缝扩展诱发垂直邻井光纤应变演化特征. 东北石油大学学报. 2024(04): 100-110+141 . 百度学术
6. 张雪龄,谷军恒,叶强,邓佳,朱维耀,程传晓,金听祥,吴学红. 分子模拟技术在页岩油气吸附和流动特性研究中的应用进展. 中国海上油气. 2023(03): 103-115 . 百度学术
7. 王利,郭小辉,曹运兴,石玢,刘晓,赵立朋,李耀谦. 基于RVE尺度的水力压裂应力扰动模型. 煤炭学报. 2023(S1): 82-95 . 百度学术
8. 杜书恒,沈文豪,赵亚溥. 页岩储层应力敏感性定量评价:思路及应用. 力学学报. 2022(08): 2235-2247 . 百度学术
9. 孙玉学,郭春萍,赵景原,付洪涛,白相双,张立春,李城里. 低毒高性能油基钻井液研制与评价. 大庆石油地质与开发. 2021(02): 95-102 . 百度学术
10. 舒志国,刘莉,梁榜,陆亚秋,郑爱维,包汉勇. 基于物质平衡原理的页岩气井产能评价方法. 天然气地球科学. 2021(02): 262-267 . 百度学术
11. 李郑涛,张震,吴鹏程,马天寿,付建红. 川南深层各向异性页岩井壁失稳力学机理. 西南石油大学学报(自然科学版). 2021(04): 11-25 . 百度学术
12. 曹文科,幸雪松,周长所. 基于节理塑性模型的页岩地层水平井井壁稳定性分析. 中国安全生产科学技术. 2021(10): 152-157 . 百度学术
13. 高彦芳,任战利,丁帅伟,陈勉,金衍. 非常规油气开采过程中的可相变多孔介质物理模型研究及参数识别. 石油钻采工艺. 2021(05): 632-641 . 百度学术
14. 卢运虎,杨典儒,金衍,梁川. 深层龙马溪组页岩气藏黏土矿物水岩作用微观机制. 地球化学. 2020(01): 76-83 . 百度学术
15. 赵亚洲,庞忠和,马智博,周传辉,马凌. 地热储多场多相数值模拟与介尺度技术进展. 科技促进发展. 2020(Z1): 359-366 . 百度学术
16. 吴峙颖,路保平,胡亚斐,蒋廷学. 压裂多级裂缝内动态输砂物理模拟实验研究. 石油钻探技术. 2020(04): 106-110 . 本站查看
17. 蔡承政,任科达,杨玉贵,胡国忠. 液氮压裂作用下页岩破裂特征试验研究. 岩石力学与工程学报. 2020(11): 2183-2203 . 百度学术
18. 刘洋,艾婷,张朝鹏,覃黎,张茹. 基于MTS 815岩石力学试验机的直接剪切测试夹具设计. 实验科学与技术. 2020(05): 85-90 . 百度学术
19. 袁亮. 煤及共伴生资源精准开采科学问题与对策. 煤炭学报. 2019(01): 1-9 . 百度学术
20. 张树翠,孙可明. 储层非均质性和各向异性对水力压裂裂纹扩展的影响. 特种油气藏. 2019(02): 96-100 . 百度学术
21. 刘曰武,高大鹏,李奇,万义钊,段文杰,曾霞光,李明耀,苏业旺,范永波,李世海,鲁晓兵,周东,陈伟民,傅一钦,姜春晖,侯绍继,潘利生,魏小林,胡志明,端祥刚,高树生,沈瑞,常进,李晓雁,柳占立,魏宇杰,郑哲敏. 页岩气开采中的若干力学前沿问题. 力学进展. 2019(00): 1-236 . 百度学术
22. 韩强,屈展,叶正寅. 基于均匀化理论的页岩微观多孔黏土强度特性. 力学学报. 2019(03): 940-948 . 百度学术
23. 夏宏泉,刘畅,王瀚玮,赵昊,周灵烨. 页岩含气量测井评价方法研究. 特种油气藏. 2019(03): 1-6 . 百度学术
24. 韩强,屈展,叶正寅. 基于多尺度均匀化理论的页岩强度表征. 石油学报. 2019(07): 858-865 . 百度学术
25. 韩强,屈展,叶正寅,董广建. 基于微米力学实验的页岩Ⅰ型断裂韧度表征. 力学学报. 2019(04): 1245-1254 . 百度学术
26. 马鸿彦,王大宁,张杰,赵会忠,李清碧,张鹏宇,王伟. 旋转导向系统在深层页岩油水平井的应用. 钻采工艺. 2019(04): 16-19+7 . 百度学术
27. 张晨晨,刘滋,董大忠,王玉满,蒋珊,管全中. 深层海相页岩脆性特征分析与表征. 新疆石油地质. 2019(05): 555-563 . 百度学术
28. 肖佳林,李奎东,高东伟,包汉勇. 涪陵焦石坝区块水平井组拉链压裂实践与认识. 中国石油勘探. 2018(02): 51-58 . 百度学术
29. 蒋秀,张艳玲,王江云,屈定荣. 水力压裂过程中套管内流动冲蚀损伤规律研究. 油气井测试. 2018(01): 48-54 . 百度学术
30. 韩强,屈展,叶正寅. 页岩多尺度力学特性研究现状. 应用力学学报. 2018(03): 564-570+690 . 百度学术
31. 廖勇,谭判,石文睿,冯爱国,何浩然. 涪陵页岩气储层产气性评价方法. 石油钻探技术. 2018(05): 69-75 . 本站查看
32. 包兴,李少华,张程,乔博,李君,耿会民. 基于试验设计的概率体积法在页岩气储量计算中的应用. 断块油气田. 2017(05): 678-681 . 百度学术
33. 熊健,刘向君,梁利喜. 甲烷在页岩黏土矿物孔中的赋存力学机制. 断块油气田. 2017(04): 500-505 . 百度学术
34. 盛茂,田守嶒,李根生,葛洪魁,廖华林,李召坤. 高压水射流冲蚀作用下页岩破坏模式与力学机制. 中国科学:物理学 力学 天文学. 2017(11): 99-106 . 百度学术
35. 卢运虎,梁川,金衍,陈勉. 高温下页岩水化损伤的各向异性实验研究. 中国科学:物理学 力学 天文学. 2017(11): 138-145 . 百度学术
36. 陈勉,金衍,卢运虎. 页岩气开发:岩石力学的机遇与挑战. 中国科学:物理学 力学 天文学. 2017(11): 6-18 . 百度学术
37. 王迪,陈勉,金衍,卢运虎. 考虑毛细管力的页岩储层压裂缝网扩展研究. 中国科学:物理学 力学 天文学. 2017(11): 66-77 . 百度学术
38. 解宇宁. 低毒环保型油基钻井液体系室内研究. 石油钻探技术. 2017(01): 45-50 . 本站查看
39. 杨恒林,乔磊,田中兰. 页岩气储层工程地质力学一体化技术进展与探讨. 石油钻探技术. 2017(02): 25-31 . 本站查看
40. 曹明. 页岩气压裂试气工程技术进展. 中国矿业. 2017(S2): 359-362 . 百度学术
41. 李根生,盛茂,田守嶒,葛洪魁,黄中伟,宋先知. 页岩气储层水平井与压裂工程基础问题探讨. 科学通报. 2016(26): 2883-2890 . 百度学术
42. 熊力坤,王升,徐烽淋,朱洪林,陈乔. 涪陵焦石坝区块页岩动静态弹性模量转换关系研究. 石油钻探技术. 2016(05): 40-44 . 本站查看
43. 王迪,金衍,陈勉,孙一流,杨亮. 毛细管力影响下页岩储层液化石油气压裂裂缝网络扩展形态研究. 中国科技论文. 2016(21): 2440-2444 . 百度学术
44. 黄进,吴雷泽,游园,黄晓凯,聂彬,张辉. 涪陵页岩气水平井工程甜点评价与应用. 石油钻探技术. 2016(03): 16-20 . 本站查看
其他类型引用(22)
计量
- 文章访问数: 4170
- HTML全文浏览量: 138
- PDF下载量: 3902
- 被引次数: 66