页岩超低温液氮辅助CO2吞吐试验研究

万涛, 王波, 王伟, 康振, 刁广智, 王斌

万涛,王波,王伟,等. 页岩超低温液氮辅助CO2吞吐试验研究[J]. 石油钻探技术,2025,53(2):151−158. DOI: 10.11911/syztjs.2025015
引用本文: 万涛,王波,王伟,等. 页岩超低温液氮辅助CO2吞吐试验研究[J]. 石油钻探技术,2025,53(2):151−158. DOI: 10.11911/syztjs.2025015
WAN Tao, WANG Bo, WANG Wei, et al. Experimental study on improving permeability of shale by CO2 huff and puff assisted by ultra-low temperature liquid nitrogen [J]. Petroleum Drilling Techniques, 2025, 53(2):151−158. DOI: 10.11911/syztjs.2025015
Citation: WAN Tao, WANG Bo, WANG Wei, et al. Experimental study on improving permeability of shale by CO2 huff and puff assisted by ultra-low temperature liquid nitrogen [J]. Petroleum Drilling Techniques, 2025, 53(2):151−158. DOI: 10.11911/syztjs.2025015

页岩超低温液氮辅助CO2吞吐试验研究

基金项目: 国家科技重大专项“鄂尔多斯盆地大型低渗透岩性地层油气藏开发示范工程”(编号:2016ZX05050)资助。
详细信息
    作者简介:

    万涛(1987—),男,重庆忠县人,2011年毕业于重庆科技学院石油工程专业,工程师,主要从事油田开发方面的研究工作。E-mail:2326169049@qq.com

    通讯作者:

    王斌,wangbingktkf@163.com

  • 中图分类号: TE348

Experimental Study on Improving Permeability of Shale by CO2 Huff and Puff Assisted by Ultra-Low Temperature Liquid Nitrogen

  • 摘要:

    页岩储层岩石致密、孔喉细小、渗透率极低,明确页岩渗流机理是提高页岩油气采收率的关键。为此,进行了页岩岩心液氮(LN2)低温处理试验和循环注CO2吞吐试验,分析了页岩经液氮低温处理后不同注气压力循环注气吞吐对页岩油采收率、岩心物性和油气两相相对渗透率的影响,明确了处理前后微观孔隙结构的变化特征。试验结果表明,LN2注入页岩后可产生313.5 MPa热应力,诱导形成微裂缝。LN2气化体积膨胀作用和循环注CO2吞吐能够在形成的微裂缝中形成再加压机制,扩展诱导裂缝,提高渗流能力。CO2吞吐采收率与注入压力成正比,超临界态CO2首轮吞吐采收率和3轮吞吐累计采收率比亚临界态CO2高32.4%和34.9%,提高幅度达154.6%和101.7%。高压注CO2所需的吞吐次数减少,产出油量主要来源于前2轮吞吐。与初始页岩岩心相比,超临界态CO2循环吞吐后岩心平均孔径增大176%,最大油、气相对渗透率分别提高了1.8倍和2.3倍。研究结果对页岩油气增产具有一定的参考价值。

    Abstract:

    The shale reservoir has tight rock, small pore throat, and very low permeability The knowledge of flow mechanism in shale is the key to improving the recovery of shale oil and gas. By conducting low-temperature liquid nitrogen (LN2) treatment experiments on shale cores and experiments of cyclic injection of CO2, the effects of cyclic gas injection at different injection pressures after low-temperature LN2 treatment on the recovery of shale oil, physical properties of cores, and relative permeability of oil and gas were studied, and the changes in the microscopic pore structure before and after the treatment were identified. The experimental results show that after LN2 injection, the shale can generate a thermal stress of 313.5 MPa, inducing the formation of micro-fractures. The volume expansion effect of LN2 vaporization and cyclic injection for CO2 can form a re-pressurization mechanism in the core after the formation of micro-fractures, expanding the induced fractures and improving the permeability. The recovery by CO2 huff and puff is proportional to the injection pressure. The cumulative recovery by the first and third rounds of supercritical CO2 huff and puff are 32.4% and 34.9% higher than those of subcritical CO2 , with an increase of 154.6% and 101.7%, respectively. The number of required huff and puff cycles for high-pressure CO2 injection is reduced, and the produced oil mainly comes from the first two rounds of huff and puff. Compared with that of the initial shale core, after supercritical cyclic CO2 huff and puff, the average pore size increases by 176%, and the maximum relative permeability of oil and gas increase by 1.8 and 2.3 times, respectively. The research results provide a reference for the production increase of shale oil and gas.

  • 图  1   岩心试验仪器

    Figure  1.   Core experimental instruments

    图  2   页岩岩心矿物组成及含量

    Figure  2.   Mineral composition and content of experimental shale samples

    图  3   LN2低温处理过程中岩心温度随时间的变化

    Figure  3.   Changes in core temperature over time during low-temperature LN2 treatment

    图  4   未处理岩心和LN2低温处理后岩心CO2吞吐采收率对比

    Figure  4.   Comparison of recovery by CO2 huff and puff of core with and without low-temperature LN2 treatment

    图  5   LN2低温处理后岩心在不同注气压力下吞吐的采收率对比

    Figure  5.   Comparison of recovery by huff and puff of core with low-temperature LN2 treatment under different gas injection pressures

    图  6   初始岩心与LN2低温处理和CO2吞吐后的岩心孔隙度和渗透率变化

    Figure  6.   Changes in porosity and permeability of initial core and core after low-temperature LN2 treatment and CO2 huff and puff

    图  7   3种不同注入压力吞吐后页岩渗透率随上覆压力的变化

    Figure  7.   Changes in shale permeability with overlying pressure after huff and puff at three different injection pressures

    图  8   初始页岩与LN2低温处理和循环注气后T2谱分布

    Figure  8.   T2 spectrum distribution of initial shale and shale after low-temperature LN2 treatment and cyclic gas injection

    图  9   初始岩心和经LN2低温处理及循环注气后岩心3端面CT扫描图像

    Figure  9.   CT scan images of three end faces of initial core and core after low-temperature LN2 treatment and cyclic gas injection

    图  10   处理前后页岩油气两相相对渗透率曲线的变化

    Figure  10.   Changes in relative permeability curve of shale oil and gas before and after treatment

    表  1   页岩岩心基本参数

    Table  1   Basic parameters of experimental shale core

    岩心编号 直径/mm 长度/mm 孔隙度,% 渗透率/10−3mD 总有机碳含量,% 镜质体反射率,% 试验设计
    1 38.25 51.75 7.32 0.45 2.11 1.15 LN2低温处理+4 MPa循环注CO2吞吐
    2 38.14 54.21 7.47 0.37 2.83 1.21 LN2低温处理+7 MPa循环注CO2吞吐
    3 38.16 52.42 6.74 0.24 3.03 1.18 LN2低温处理+10 MPa循环注CO2吞吐
    4 38.11 51.56 7.21 0.33 2.81 1.07 10 MPa循环注CO2吞吐(对比试验)
    下载: 导出CSV

    表  2   岩心在低温处理中形成的热应力及计算参数

    Table  2   Thermal stress and calculation parameters formed during low-temperature treatment

    岩心编号 弹性模量/103 MPa 泊松比 热膨胀系数/10−6−1 低温LN2处理前温度/℃ 低温LN2处理后温度/℃ 热应力/MPa
    1 61.0 0.296 15 78.5 −177.3 303.3
    2 56.4 0.284 15 78.5 −181.1 281.9
    3 70.3 0.311 15 78.5 −178.6 355.5
    下载: 导出CSV

    表  3   不同注气压力下页岩处理前后孔径参数变化

    Table  3   Changes in pore size parameters before and after shale treatment under different gas injection pressures

    岩心 平均弛豫
    时间/ms
    平均孔径/
    nm
    最长弛豫
    时间/ms
    最大孔径/
    nm
    岩心1处理前 0.63 2.7 76 326
    岩心1处理后 0.96 4.1 564 2425
    岩心3处理前 0.48 2.1 151 649
    岩心3处理后 1.36 5.8 982 4222
    下载: 导出CSV
  • [1] 路千里,张航,郭建春,等. 基于相场法的水力裂缝扩展模拟技术现状及展望[J]. 天然气工业,2023,43(3):59–68. doi: 10.3787/j.issn.1000-0976.2023.03.006

    LU Qianli, ZHANG Hang, GUO Jianchun, et al. Status and prospect of hydraulic fracture propagation simulation based on phase field method[J]. Natural Gas Industry, 2023, 43(3): 59–68. doi: 10.3787/j.issn.1000-0976.2023.03.006

    [2]

    TANG Huiying, WANG Shihao, ZHANG Ruihan, et al. Analysis of stress interference among multiple hydraulic fractures using a fully three-dimensional displacement discontinuity method[J]. Journal of Petroleum Science and Engineering, 2019, 179: 378–393. doi: 10.1016/j.petrol.2019.04.050

    [3] 王小龙,高庆贤,董双福,等. 超低渗致密油藏二氧化碳吞吐合理注入参数确定[J]. 石油钻采工艺,2023,45(3):368–375.

    WANG Xiaolong, GAO Qingxian, DONG Shuangfu, et al. Determination of rational parameters for CO2 huff-n-puff in tight oil reservoirs with ultra-low permeability[J]. Oil Drilling & Production Technology, 2023, 45(3): 368–375.

    [4] 叶长青,马辉运,蔡道纲,等. 国外页岩气井人工举升增产技术研究现状与进展[J]. 石油钻采工艺,2022,44(3):328–334.

    YE Changqing, MA Huiyun, CAI Daogang, et al. Research status and progress of artificial lifting of shale gas wells abroad[J]. Oil Drilling & Production Technology, 2022, 44(3): 328–334.

    [5] 李向阳,季汉成,卞腾飞,等. 玛北斜坡百口泉组致密砾岩水力压裂裂缝表征[J]. 新疆石油地质,2023,44(2):178–183.

    LI Xiangyang, JI Hancheng, BIAN Tengfei, et al. Characterization of hydraulic fractures in tight conglomerate reservoirs in Baikouquan Formation, Mabei slope[J]. Xinjiang Petroleum Geology, 2023, 44(2): 178–183.

    [6] 马东东,罗宇杰,胡大伟,等. 粒径分选性与围压对砂砾岩水力压裂破裂影响机制研究[J]. 岩石力学与工程学报,2020,39(11):2264–2273.

    MA Dongdong, LUO Yujie, HU Dawei, et al. Effects of particle size sorting and confining pressure on hydraulic fracturing mechanism of glutenite rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(11): 2264–2273.

    [7] 李邦国,侯家鵾,雷兆丰,等. 超临界CO2萃取页岩油效果评价及影响因素分析[J]. 石油钻探技术,2024,52(4):94–103.

    LI Bangguo, HOU Jiakun, LEI Zhaofeng, et al. Evaluation of shale oil extraction by supercritical CO2 and analysis of influencing factors[J]. Petroleum Drilling Techniques, 2024, 52(4): 94–103.

    [8] 汤积仁,张靖,卢义玉,等. 页岩对CO2的绝对吸附量及其影响因素试验研究[J]. 煤炭学报,2020,45(8):2838–2845.

    TANG Jiren, ZHANG Jing, LU Yiyu, et al. Absolute adsorption capacity of shale on CO2 and its influencing factors[J]. Journal of China Coal Society, 2020, 45(8): 2838–2845.

    [9] 贾连超,刘鹏飞,袁丹,等. 注CO2提高页岩吸附气采收率试验:以鄂尔多斯盆地延长组长7页岩气为例[J]. 大庆石油地质与开发,2021,40(2):153–159.

    JIA Lianchao, LIU Pengfei, YUAN Dan, et al. Experiment of enhancing the recovery of the shale adsorbed gas by CO2 injection: taking Yanchang-Formation Chang-7 shale gas in Ordos Basin as an example[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(2): 153–159.

    [10] 张佳亮,葛洪魁,张衍君,等. 吉木萨尔页岩油注入介质梯级提采试验评价[J]. 石油钻采工艺,2023,45(2):244–250.

    ZHANG Jialiang, GE Hongkui, ZHANG Yanjun, et al. Experimental evaluation on EOR medium grading of shale in Jimusaer Oilfield[J]. Oil Drilling & Production Technology, 2023, 45(2): 244–250.

    [11]

    GRUNDMANN S R, RODVELT G D, DIALS G A, et al. Cryogenic nitrogen as a hydraulic fracturing fluid in the Devonian shale[R]. SPE 51067, 1998.

    [12] 吴壮坤,张宏录,池宇璇. 苏北页岩油二氧化碳强压质换技术[J]. 石油钻探技术,2024,52(4):87–93.

    WU Zhuangkun, ZHANG Honglu, CHI Yuxuan. CO2 high pressure quality exchange technology of shale oil in northern Jiangsu Province[J]. Petroleum Drilling Techniques, 2024, 52(4): 87–93.

    [13] 张衍君,王鲁瑀,刘娅菲,等. 页岩油储层压裂−提采一体化研究进展与面临的挑战[J]. 石油钻探技术,2024,52(1):84–95. doi: 10.11911/syztjs.2024012

    ZHANG Yanjun, WANG Luyu, LIU Yafei, et al. Advances and challenges of integration of fracturing and enhanced oil recovery in shale oil reservoirs[J]. Petroleum Drilling Techniques, 2024, 52(1): 84–95. doi: 10.11911/syztjs.2024012

    [14]

    SIRATOVICH P A, VILLENEUVE M C, COLE J W, et al. Saturated heating and quenching of three crustal rocks and implications for thermal stimulation of permeability in geothermal reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 80: 265–280. doi: 10.1016/j.ijrmms.2015.09.023

    [15]

    ALQATAHNI N B, CHA Minsu, YAO Bowen, et al. Experimental investigation of cryogenic fracturing of rock specimens under true triaxial confining stresses[R]. SPE 180071, 2016.

    [16]

    KHALIL R, EMADI H. An experimental investigation of cryogenic treatments effects on porosity, permeability, and mechanical properties of Marcellus downhole core samples[J]. Journal of Natural Gas Science and Engineering, 2020, 81: 103422. doi: 10.1016/j.jngse.2020.103422

    [17]

    LI Ran, ZHANG Chengcheng, HUANG Zhongwei. Quenching and rewetting of rock in liquid nitrogen: Characterizing heat transfer and surface effects[J]. International Journal of Thermal Sciences, 2020, 148: 106161. doi: 10.1016/j.ijthermalsci.2019.106161

    [18]

    MCDANIEL B W, GRUNDMANN S R, KENDRICK W D, et al. Field applications of cryogenic nitrogen as a hydraulic fracturing fluid[R]. SPE 38623, 1997.

    [19]

    FU Chunkai, LIU Ning. Waterless fluids in hydraulic fracturing: a review[J]. Journal of Natural Gas Science and Engineering, 2019, 67: 214–224. doi: 10.1016/j.jngse.2019.05.001

    [20]

    CHA Minsu, ALQAHTANI N B, YAO Bowen, et al. Cryogenic fracturing of wellbores under true triaxial-confining stresses: experimental investigation[J]. SPE Journal, 2018, 23(4): 1271–1289. doi: 10.2118/180071-PA

    [21]

    JIANG Long, CHENG Yuanfang, HAN Zhongying, et al. Experimental investigation on pore characteristics and carrying capacity of Longmaxi shale under liquid nitrogen freezing and thawing[R]. SPE 191111, 2018.

    [22]

    ALTAWATI F, EMADI H, PATHAK S. Improving oil recovery of Eagle Ford shale samples using cryogenic and cyclic gas injection methods: an experimental study[J]. Fuel, 2021, 302: 121170. doi: 10.1016/j.fuel.2021.121170

    [23]

    ENAYATPOUR S, PATZEK T. Thermal shock in reservoir rock enhances the hydraulic fracturing of gas shales[R]. URTEC 1620617, 2013.

    [24] 芦迪,张敬茹,张毅,等. 注CO2提高页岩气采收率试验研究[J]. 大连理工大学学报,2021,61(5):464–470. doi: 10.7511/dllgxb202105004

    LU Di, ZHANG Jingru, ZHANG Yi, et al. Experimental study of enhancing shale gas recovery by CO2 injection[J]. Journal of Dalian University of Technology, 2021, 61(5): 464–470. doi: 10.7511/dllgxb202105004

    [25]

    ZHOU Junping, TIAN Shifeng, ZHOU Lei, et al. Experimental investigation on the influence of sub- and super-critical CO2 saturation time on the permeability of fractured shale[J]. Energy, 2020, 191: 116574. doi: 10.1016/j.energy.2019.116574

    [26] 孟昆,王胜建,薛宗安,等. 利用核磁共振资料定量评价页岩孔隙结构[J]. 波谱学杂志,2021,38(2):215–226. doi: 10.11938/cjmr20202856

    MENG Kun, WANG Shengjian, XUE Zongan, et al. Quantitative evaluation of shale pore structure using nuclear magnetic resonance data[J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 215–226. doi: 10.11938/cjmr20202856

    [27] 郎东江,伦增珉,吕成远,等. 页岩油注二氧化碳提高采收率影响因素核磁共振试验[J]. 石油勘探与开发,2021,48(3):603–612. doi: 10.11698/PED.2021.03.15

    LANG Dongjiang, LUN Zengmin, LYU Chengyuan, et al. Nuclear magnetic resonance experimental study of CO2 injection to enhance shale oil recovery[J]. Petroleum Exploration and Development, 2021, 48(3): 603–612. doi: 10.11698/PED.2021.03.15

  • 期刊类型引用(3)

    1. 陈立雄,董兴蒙. 基于改进人工蜂群的高精度纵波慢度提取方法. 测井技术. 2022(06): 664-668 . 百度学术
    2. 彭程,张进才,陈勇,李斌. 基于Akima插值的地面沉降等值面服务构建方法. 计算机与现代化. 2021(03): 63-69 . 百度学术
    3. 王瀚玮,夏宏泉,陈宇,赵昊. 页岩气水平井LWD曲线的环境因素影响及校正方法. 石油钻探技术. 2017(06): 116-122 . 本站查看

    其他类型引用(3)

图(10)  /  表(3)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  15
  • PDF下载量:  10
  • 被引次数: 6
出版历程
  • 收稿日期:  2024-09-03
  • 修回日期:  2025-02-03
  • 录用日期:  2025-02-03
  • 网络出版日期:  2025-02-09
  • 刊出日期:  2025-04-27

目录

    /

    返回文章
    返回