Development and Performance Evaluation of the High Temperature Resistant Polymer Fluid Loss Agent AAS
-
摘要: 深井超深井井底温度高,水泥浆滤失控制难度大。为解决这一问题,以 2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、丙烯酰胺(AM)和苯乙烯磺酸钠(SSS)为原料,以偶氮二异丁脒盐酸盐为引发剂,通过优化AMPS、AM和SSS三者的比例,合成了三元共聚耐高温降滤失剂AAS。利用红外光谱、核磁共振氢谱表征、热重和差热分析等方法评价了AAS的稳定性,并开展了水泥浆高温滤失性能评价。结果表明,AMPS、AM和SSS质量比为20:5:1时,AAS的分解温度为350℃左右;AAS加量为1.6%时,在180℃条件下水泥浆API滤失量可以控制在150 mL以下,150℃条件下滤失量为56 mL。研究表明,降滤失剂AAS能够降低水泥浆在高温下的滤失量,对水泥浆流变性、强度和稠化时间无明显影响,能满足高温固井对水泥浆的要求。Abstract: With high bottom hole temperatures in deep and ultra deep wells, there are difficulties in mud filtration control. The study on high temperature resistant polymer fluid loss agent was done in which 2-acrylamido-2-methyl propane sulfonic acid (AMPS), acrylamide (AM) and sodium styrene sulfonate (SSS) were used as raw materials and azo diisobutyl amidine hydrochloride as the initiator. The proportion of AMPS, AM and SSS was optimized to obtain terpolymers through chemical reaction. Then the synthetic products were extracted, dried and crushed with acetone to produce ternary copolymerization fluid loss agent, AAS. High-temperature cement slurry filtration performances were evaluated by using infrared spectroscopy, nuclear magnetic resonance hydrogen spectrum characterization, thermogravimetric and differential thermal analysis to determine the stability of these synthetic products. Research results showed that the synthetic copolymer decomposition temperature was 350℃ when the mass ratio of AMPS,AM and SSS was 20:5:1; API cement slurry filtration could be controlled under 150 mL at 180℃ when the dosage of copolymer was increased by 1.6%. At 150℃, the filtration was 56 mL. The research showed that the ternary copolymer fluid loss agent AAS could significantly improve the filtration control ability of the cement slurry at high temperatures. In addition, the ternary copolymer fluid had no obvious effect on rheological properties, strength and thickening time of the cement slurry, so that it could meet the technical requirements for high-temperature cementing slurry.
-
Keywords:
- terpolymer /
- fluid loss additive /
- high temperature resistance /
- co-polymerization
-
-
[1] 张德润,张旭.固井液设计及应用:下册[M].北京:石油工业出版社,2000:52-60. Zhang Derun,Zhang Xu.The cementing fluid design and application:part Ⅱ[M].Beijing:Petroleum Industry Press,2000:52-60. [2] Baret J F.Why cement fluid loss additives are necessary[R].SPE 17630,1988.
[3] 刘景丽,郝惠军,李秀妹,等.油井水泥降失水剂接枝改性聚乙烯醇的研究[J].钻井液与完井液,2014,31(4):79-80. Liu Jingli,Hao Huijun,Li Xiumei,et al.Study on graft modified PVA-A cement slurry fluid loss reducer[J].Drilling Fluid Completion Fluid,2014,31(4):79-80. [4] 赵田红,王忠信,谷秋志,等.阴离子型AM/AMPS共聚物的合成及性能评价[J].精细石油化工进展,2006,7(12):21-23. Zhao Tianhong,Wang Zhongxin,Gu Qiuzhi,et al.Synthesis and evaluation of anionic AM/AMPS copolymer[J].Dadvances in Fine Petrochemicals,2006,7(12):21-23. [5] Fink J K.Oil field chemicals[C].Burlington:Gulf Professional Publishing,2003:Chapter 10.
[6] Reddy B Raghava,Riley Wendell D.High temperature viscosifying and fluid loss controlling additives for well cements,well cement compositions and methods:US,6770604[P].2004-08-20.
[7] Bair Keith A,Chen Fu,Melbouci Mohand,et al.Polymeric fluid loss additives and method of use thereof:US,6590050[P].2003-07-08.
[8] Susann Wiechers,Gudrun Schmidt-Naake.Copolymerization of 2-Acrylamido-2-methl-1-propanesulfonic acid and 1-Vinylimdazole in inverse miniemulsion[J].Macromolecular Reaction Engineering,2008,2(2):126-134.
[9] 李晓岚,国安平,李韶利,等.抗高温油井水泥降失水剂的合成及性能评价[J].油田化学,2013,30(2):166-167. Li Xiaolan,Guo Anping,Li Shaoli,et al.Synthesis and performance evaluation of high temperature resistant fluid loss reducer for oil well cement[J].Oilfield Chemistry,2013,30(2):166-167. [10] 邓清月,高婷,李爽.油井水泥降失水剂的合成及性能评价[J].精细石油化工进展,2011,12(9):9-11. Deng Qingyue,Gao Ting,Li Shuang.Synthesis and evaluation of fluid loss additive for oil well cement[J].Dadvances in Fine Petrochemicals,2011,12(9):9-11. [11] 胶凝材料编写组.胶凝材料学[M].北京:中国建筑工业出版社,1980:91-92. Editorial Committee of Cementing Material Science.Cementing material science[M].Beijing:China Architecture Building Press,1980:91-92. -
期刊类型引用(12)
1. 杨丽丽,王爱佳,蒋官澄,敖天,赵正国,唐润平. RAFT聚合制备嵌段聚合物结构对降滤失剂性能的影响. 钻井液与完井液. 2022(01): 23-28 . 百度学术
2. 高伟,李银婷,余福春,李双贵,毛惠. 抗超高温水基钻井液用聚合物降滤失剂的研制. 钻井液与完井液. 2021(02): 146-151+157 . 百度学术
3. 俞玲,刘卫红,许明标,宋建建,周文,邓亚慧. 用于油基钻井液堵漏的氯氧镁水泥浆体系. 钻井液与完井液. 2020(03): 332-336 . 百度学术
4. 于永金,丁志伟,张弛,张华,郭锦棠. 抗循环温度210℃超高温固井水泥浆. 钻井液与完井液. 2019(03): 349-354 . 百度学术
5. 佟乐,雒旭,杨双春. 钻井液聚合物降滤失剂研究进展. 应用化工. 2018(07): 1523-1527 . 百度学术
6. 吴鑫磊,闫丽丽,王立辉,王发云. 环保型钻井液用降滤失剂研究进展. 钻井液与完井液. 2018(03): 8-16 . 百度学术
7. 王岩,孙金声,黄贤斌,刘敬平. 抗高温耐盐钙五元共聚物降滤失剂的合成与性能. 钻井液与完井液. 2018(02): 23-28 . 百度学术
8. 鄢宇杰,汪淑敏,李永寿,付振永. 裂缝型碳酸盐岩纤维降滤失实验研究及应用. 断块油气田. 2017(04): 574-577 . 百度学术
9. 徐运波,蓝强,张斌,陈健,孙德军. 梳型聚合物降滤失剂的合成及其在深井盐水钻井液中的应用. 钻井液与完井液. 2017(01): 33-38 . 百度学术
10. 秦波波,罗春芝,杨云峰. 水泥浆聚合物降滤失剂的合成及性能评价. 长江大学学报(自科版). 2016(04): 27-29+38+4 . 百度学术
11. 马康,姜汉桥,李俊键,方文超,张振涛,郭亮. 基于核磁共振的复杂断块油藏微观动用均衡程度实验. 断块油气田. 2016(06): 745-748 . 百度学术
12. 杨勇. 新型抗高温水泥悬浮剂的研制与现场试验. 石油钻探技术. 2016(03): 44-49 . 本站查看
其他类型引用(1)
计量
- 文章访问数: 3124
- HTML全文浏览量: 94
- PDF下载量: 3818
- 被引次数: 13