Design Optimization of Downhole Magnetic Source for Rotary Magnetic Ranging System
-
摘要: 为了提高随钻探测过程中永磁体磁源的磁性能,增大磁源信号的使用范围,对旋转磁导向系统井下磁源进行了优化设计研究。根据电磁场理论及所用磁源的特点,建立了圆柱形永磁体电流模型;利用矢量磁位方程推导出圆柱形永磁体截面直径和长度与其空间磁场强度的关系,圆柱形永磁体的截面直径和长度决定了其空间磁场强度;并对不同几何参数的圆柱形永磁体和其所在磁短节的空间磁场强度进行了测量和分析。永磁体长度一定时,直径从10 mm增大到20 mm,其空间磁感应强度增加了近80%;长度从50 mm增大到100 mm,其空间磁感应强度增大了近200%。试验表明,内部并排平行放置永磁体的磁短节空间磁场强度与圆柱形永磁体的直径和长度均呈单调递增关系。等体积永磁体的空间磁场测量结果表明,长度与直径之比越大,永磁体空间磁场越强。因此,合理设计永磁体的几何参数,可以增强磁短节的空间磁感应强度,提高测量的准确性。Abstract: In order to improve the magnetic field intensity and extend the range of magnetic field of magnetic source used in RMRS(rotating magnet ranging system),magnetic source optimization design was conducted.Based on static magnetic field theory and the feature of magnetic source,the electric current model of cylindrical permanent magnet used in the magnetic source was established.The relationship among the magnetic intensity and the diameter as well as length of the cylindrical permanent magnet was derived based on magnetic vector potential equation.Spatial magnetic intensity is dependent on diameter and length of the cylindrical permanent magnet.According to the experiments on the different cylindrical permanent magnets,the spatial magnetic intensity of the magnet sub was measured and analyzed.The results show that the spatial magnetic induction density was increased 80% when the diameters of the magnets increase from 10 mm to 20 mm with the same length.Given the same magnet diameter,the spatial magnetic induction density increases 200% when the magnet length increased from 50 mm to 100 mm.For the magnet sub whose permanent magnets are arranged side by side,its spatial magnetic intensity will increase with the increase of diameter and length of cylindrical permanent magnets.Given the same volume,the magnet will have a stronger magnetic intensity with a greater length-to-diameter ratio.The magnet with a length-to-diameter ratio of 8.33 has the twice magnetic intensity as the magnet with a length-to-diameter ratio of 0.53.Consequently,the design optimization of the magnet’s geometrical parameter can effectively improve the performance of the magnetic source.
-
-
[1] 胡汉月, 陈庆寿.RMRS在水平井钻进中靶作业中的应用[J].地质与勘探, 2008, 44(6):89-92. Hu Hanyue, Chen Qingshou.RMRS application on target-hitting of horizontal drilling[J].Geology and Prospecting, 2008, 44(6):89-92. [2] Kylingstad A, Halsey G W.Magnetic ranging tool accurately guides replacement well[J].Oil Gas Journal, 1992, 90(51):96-99.
[3] 宋盼.地下磁导航系统的磁源设计[D].南昌:南昌航空大学测试与光电工程学院, 2010. Song Pan.Magnetic source design of rotary magnetic ranging system[D].Nanchang:Nanchang Hangkong University, School of Measuring and optical Engineering, 2010. [4] 王德桂, 高德利.管柱形磁源空间磁场矢量引导系统研究[J].石油学报, 2008, 29(4):609-611. Wang Degui, Gao Deli.Study of magnetic vector guide system in tubular magnet source space[J].Acta Petrolei Sinica, 2008, 29(4):609-611. [5] 姚林, 樊华.RMRS测距仪在延平1水平连通井组中的应用[J].油气藏评价与开发, 2011, 1(6):76-80. Yao Lin, Fan Hua.The application of RMRS rangefinder in the horizontal connected well group of Yanping-1[J].Reservoir Evaluation and Development, 2011, 1(6):76-80. [6] 陈若铭, 陈勇, 罗维, 等.MGT导向技术在SAGD双水平中的应用及研制[J].新疆石油天然气, 2011, 7(3):25-29. Chen Ruoming, Chen Yong, Luo Wei, et al.Application of magnetic guidance technology in SAGD double horizontal well and development[J].Xinjiang Oil Gas, 2011, 7(3):25-29. [7] Al-Khodhori S, Al-Riyami H, Holweg P, et al.Connector conductor wells technology in brunei shell petroleum achieve high profitability through multi-well bores and downhole connections[R].SPE 111441, 2008.
[8] 杨明合, 夏宏南, 屈胜元, 等.磁导向技术在SAGD双水平井轨迹精细控制中的应用[J].钻采工艺, 2010, 33(3):12-14. Yang Minghe, Xia Hongnan, Qu Shengyuan, et al.MGT system applied to accuracy well tracks controlling in SAGD horizontal twin wells[J].Drilling Production Technology, 2010, 33(3):12-14. [9] 韩志勇.定向钻井设计与计算[M].东营:中国石油大学出版社, 2007:5-47. Han Zhiyong.Design and calculation of directional drilling[M].Dongying:China University of Petroleum Press, 2007:5-47. [10] 谢川.一种基于磁强计和倾角传感器的钻井测斜仪[J].仪器仪表学报, 2010, 31(10):2357-2362. Xie Chuan.Clinometer for artesian well based on magnetometer and inclination angle sensor[J].Chinese Journal of Scientific Instrument, 2010, 31(10):2357-2362. [11] 李番军.连续测斜仪研究[D].哈尔滨:哈尔滨工业大学电气工程及自动化学院, 2006. Li Fanjun.The research of inclinometer[D].Harbin:Harbin Institute of Technology, School of Electrical Engineering and Automation 2006. [12] 刘修善, 王继平.基于大地测量理论的井眼轨迹监测方法[J].石油钻探技术, 2007, 35(4):1-5. Liu Xiushan, Wang Jiping.A method for monitoring wellbore trajectory based on the theory of geodesy[J].Petroleum Drilling Techniques, 2007, 35(4):1-5. [13] 周希朗.电磁场[M].北京:电子工业出版社, 2008:40-42. Zhou Xilang.Electromagnetic Field[M].Beijing:Publishing House of Electronics Industry, 2008:40-42. [14] 劳兰P, 考森D R.电磁场与电磁波[M].北京:人民教育出版社, 1980:98-109. Lorrain P, Corson D R.Electromagnetic fields and waves[M].Beijing:People Education Press, 1980:98-109. [15] 倪光正, 杨仕友, 邱捷, 等.工程电磁场数值计算[M].北京:机械工业出版社, 2012:76-90. Ni Guangzheng, Yang Shiyou, Qiu Jie, et al.Numerical computations of electromagnetic fields[M].Beijing:China Machine Press, 2012:76-90.
计量
- 文章访问数: 2784
- HTML全文浏览量: 49
- PDF下载量: 3360