毫米波钻井技术

郭先敏

郭先敏. 毫米波钻井技术[J]. 石油钻探技术, 2014, 42(3): 55-60. DOI: 10.3969/j.issn.1001-0890.2014.03.011
引用本文: 郭先敏. 毫米波钻井技术[J]. 石油钻探技术, 2014, 42(3): 55-60. DOI: 10.3969/j.issn.1001-0890.2014.03.011
Guo Xianmin. Millimeter Wave Drilling Technology[J]. Petroleum Drilling Techniques, 2014, 42(3): 55-60. DOI: 10.3969/j.issn.1001-0890.2014.03.011
Citation: Guo Xianmin. Millimeter Wave Drilling Technology[J]. Petroleum Drilling Techniques, 2014, 42(3): 55-60. DOI: 10.3969/j.issn.1001-0890.2014.03.011

毫米波钻井技术

基金项目: 

中国石油化工股份有限公司前瞻项目"非油气领域科技成果的启示作用调研"(编号:P12094)部分内容。

详细信息
    作者简介:

    郭先敏(1972- ),男,黑龙江通河人,1995年毕业于大庆石油学院石油工程专业,2009年获中国石油大学(北京)油气井工程专业硕士学位,工程师,主要从事科技情报工作。联系方式:13505466036,guaoxm-gxm@163.com。

  • 中图分类号: TE249

Millimeter Wave Drilling Technology

  • 摘要: 为了给我国毫米波钻井技术的研发提供借鉴和思路,研究了国外毫米波钻井技术的现状和成果。毫米波钻井技术是利用大功率回旋管毫米波发射机发射的毫米波电磁能强束熔化蒸发岩石,高压空气或氮气携岩屑(实际是携纳米级粉末)进行钻井。毫米波技术可省去常规钻井更换钻头和下套管固井等工序,因此可以缩短钻井周期。室内试验表明,毫米波钻井的机械钻速与毫米波的功率、岩石的蒸发比能及吸收功率密度密切相关。毫米波钻井技术为提高钻井速度、降低钻井成本提供了一种可行的新思路和新方法。
    Abstract: This paper introduces the millimeter wave drilling technique abroad,which uses the high-power gyrotron transmitter to emit intensive beam of millimeter-wave electromagnetic energy for melting or vaporizing rocks,and uses high pressure air or nitrogen for carrying cuttings(micron-sized powder actually),including the principle of drilling,theoretical research status and achievements and conclusion obtained by laboratory experiment.It can shorten the drilling time by eliminating the process of changing bit and running casing and cementing as conventional drilling method.The laboratory experiment shows that ROP of millimeter wave drilling is related to the millimeter wave power,specific energy for rock vaporization and absorption power density.Millimeter wave drilling technology will be a novel idea and method for improving drilling rate and reducing cost.
  • [1]

    Maurer W C.Novel drilling techniques[M].London:Pergamon Press, 1968:87-91.

    [2]

    Maurer W C.Advanced drilling techniques[M].Tulsa:Petroleum Publishing Company, 1980:17.

    [3]

    Moavenzadeh F, Ma Garry F J, Williamson R B.Use of laser and surface active agents for excavation in hard rocks[R].SPE 2240, 1968.

    [4]

    Graves R M, O’Brien D G.StarWars laser technology applied to drilling and completing gas wells[R].SPE 49259, 1998.

    [5]

    Sinha P, Gour A.Laser drilling research and application:an update[R].SPE 102017, 2006.

    [6] 窦宏恩.21世纪的激光钻井技术[J].石油科技论坛, 2004(2):59-62. Dou Hong’en.Laser drilling technology in the 21st century[J].Oil Forum, 2004(2):59-62.
    [7]

    Graves R M, Araya Anibal, Gahan B C, et al.Comparison of specific energy between drilling with high power lasers and other drilling methods[R].SPE 77627, 2002.

    [8]

    Parker R A, Gahan B C, Graves R M, et al.Laser drilling:effects of beam application methods on improving rock removal[R].SPE 84353, 2003.

    [9]

    Batarseh S, Gahan B C, Graves R M, et al.Well perforation using high power-lasers[R].SPE 84418, 2003.

    [10] 高德利.钻井科技发展的历史回顾现状分析与建议[J].石油科技论坛, 2004(2):29-39. Gao Deli.Historical review situation analysis and recommendations of drilling technology development[J].Oil Forum, 2004(2):29-39.
    [11]

    Woskov P, Cohn D.Millimeter-wave drilling and fracturing system:US, 20100252324-A1[P].2010-10-7.

    [12]

    Sakamoto K, Kasugai A, Takahashi K, et al.Achievement of robost high-efficiency 1 MW oscillation in the hard-self excited region by a 170 GHz continuous-wave gyrotron[J].Nature Physics, 2007, 3(4):411-414.

    [13]

    Choi E M, Marchewka C D, Mastovsky I, et al.Experimental results for a 1.5 MW, 110 GHz gyrotron oscillator with reduced mode competition[J].Physics of Plasma, 2006, 13(2):1-7.

    [14]

    Grimm T L, Kreischer K E, Temkin R J.Experimental Study of a megawatt 200-300 Ghz gyrotron oscillator[J].Physics of Fluids B, 1993, 5(4):4135-4143.

    [17]

    Whitlock R D, Frick G M.Particle size distributions of aerosols formed by laser ablation of solids at 760 Torr[J].Journal of Materials Research, 1994, 9(11):2868-2872.

    [18]

    Hunten D M, Turco R P, Toon O B.Smoke and dust particles of meteoric origin in the mesosphere and stratosphere[J].Journal of the Atmospheric Science, 1980, 37(6):1342-1357.

    [20]

    Woskov P, Michael P.Millimeter-wave heating, radiometry, and calorimetry of granite rock to vaporization[J].Journal of Infrared Millimeter and Terahertz Waves, 2012, 33(1):82-95.

  • 期刊类型引用(4)

    1. 韩玉娇. 随钻方位成像测井数据压缩与还原方法. 西安石油大学学报(自然科学版). 2024(06): 95-99+139 . 百度学术
    2. 王港,秦臻,苏可嘉,胡雪琴,魏康健,邓呈祥. 非平行界面地层水平井自然伽马测井蒙特卡罗模拟. 江西科学. 2023(03): 478-481+527 . 百度学术
    3. 肖功勋. 分析螺旋井眼的预防及测井数据校正. 中国石油和化工标准与质量. 2021(07): 7-8 . 百度学术
    4. 彭礼韬,张立国,郝琦,玉宇. MCNP与GEANT4应用于随钻方位伽马测井仪探测性能对比. 测井技术. 2021(03): 267-272 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  3167
  • HTML全文浏览量:  123
  • PDF下载量:  3868
  • 被引次数: 9
出版历程
  • 收稿日期:  2013-12-16
  • 修回日期:  2014-03-13
  • 刊出日期:  1899-12-31

目录

    /

    返回文章
    返回