Propagating Orientation of Hydraulic Fractures in Muddy Shale Formation
-
摘要: 以非线性断裂力学理论为基础,通过应力叠加原理,推导出了Ⅰ-Ⅱ型复合水力裂缝起裂角的解析模型。利用该模型计算了裂缝与最大水平主应力方向夹角为0°、30°、60°和90°时的裂缝端部塑性区域范围,并将利用该模型计算出的起裂角与利用最大周向应力准则计算出的起裂角进行了对比。结果表明:裂缝与最大水平主应力方向夹角为0°、30°、60°和90°时的裂缝端部塑性区域的范围分别是0~0.18,0~0.45,0~0.45和0~0.18倍半缝长;裂缝与最大水平主应力方向夹角为0°时,裂缝的起裂角为180°;当裂缝与最大水平主应力方向夹角增大至90°时,起裂角降为0°;在裂缝与最大水平主应力方向夹角及缝内流体压力相同的情况下,利用该模型计算出的起裂角比利用最大周向应力准则计算出的大0°~20°;在裂缝与最大水平主应力方向夹角相同的情况下,缝内流体压力为55 MPa时的起裂角比缝内流体压力为45 MPa时的大0°~40°。研究表明,利用非线性断裂力学研究泥页岩地层起裂是可行的,研究结果可以为水平井分段压裂优化提供一定的理论指导。Abstract: Muddy shale is ductile rock,the initiation angle of muddy shale formation was researched to enhance the effect of hydraulic fracturing.In this work,an analytic model for plastic core region and fracture initiation of Ⅰ-Ⅱ mixed mode hydraulic fractures was proposed base on Plastic Mechanics and superposition principle.Based on the model,the plastic core region of fracture was calculated considering the fracture and maximum horizontal principal stress inclination angle of 0°,30°,45° and 60°.The calculated initiation angles were compared with the initiation angles by adopting maximum tangential stress criterion.Results showed that when inclination angles were 0°,30°,45° and 60°,the regime of plastic core regions is 0-0.18,0-0.45,0-0.45 and 0-0.18 times that of half-length of fracture respectively.When the inclination was 0°,the initiation angle was 180°,and the initiation angle decreased to 0° when the inclination angle was 90°.Given the same inclination angle and pressure,the fracture initiation angle of the new model was 0°-20° larger than the initiation angle based on maximum tangential stress criterion.With the same inclination angle,the initiation angle under 55 MPa was 0°-40° larger than that under 45 MPa.The research results showed that Plastic Mechanics was a feasible method for researching initiation of ductile formation,and the results could provide theoretical reference to the optimization of perforation angle and fracturing pressure of horizontal well multistage fracturing in muddy shale formation.
-
-
[1] 丁文龙, 许长春, 久凯, 等.泥页岩裂缝研究进展[J].地球科学进展, 2011, 26(2):135-144. Ding Wenlong, Xu Changchun, Jiu Kai, et al.The research progress of shale fractures[J].Advances in Earth Science, 2011, 26(2):135-144. [2] Erdogan F, Sih G C.On the crack extension in plates under plane loading and transverse shear[J].Journal of Basic Engineering, 1963, 85(4):519-525.
[3] Palaniswamy K, Knauss W G.On the problem of crack extension in brittle solids under general loading[J].Mechanics Today, 1978, 4(30):87-148.
[4] Sih G C.Some basic problems in fracture mechanics and new concepts[J].Engineering Fracture Mechanics, 1973, 5(2):365-377.
[5] Sih G C.Strain-energy-density factor applied to mixed mode crack problems[J].International Journal of Fracture, 1974, 10(3):305-321.
[6] Sih G C.A special theory of crack propagation[J].Mechanics of Fracture Initiation and Propagation Engineering Applications of Fracture Mechanics, 1973, 10:1-22.
[7] Whittaker B N, Singh R N, Sun G.Rock fracture mechanics[M].London:Elsevier, 1992:21-22.
[8] 李杭州, 廖红建, 孔令伟, 等.膨胀性泥岩应力-应变关系的试验研究[J].岩土力学, 2007, 28(1):107-110. Li Hangzhou, Liao Hongjian, Kong Lingwei, et al.Experimental study on stress-strain relationship of expansive mud-stone[J].Rock and Soil Mechanics, 2007, 28(1):107-110. [9] 李荣, 孟英峰, 罗勇, 等.泥页岩三轴蠕变实验及结果应用[J].西南石油大学学报, 2007, 29(3):57-59. Li Rong, Meng Yingfeng, Luo Yong, et al.Triaxial creep test of mudstone and the result application[J].Journal of Southwest Petroleum University, 2007, 29(3):57-59. [10] 刘钦, 李术才, 李利平, 等.软弱破碎围岩隧道炭质页岩蠕变特性试验研究[J].岩土力学, 2012, 33(增刊2):21-28. Liu Qin, Li Shucai, Li Liping, et al.Experimental study of carbonaceous shale creep characters of weak broken surrounding rock tunnel[J].Rock and Soil Mechanics, 2012, 33(supplement 2):21-28. [11] 许宝田, 阎长虹, 许宏发.三轴试验泥岩应力-应变特性分析[J].岩土工程学报, 2004, 26(6):863-865. Xu Baotian, Yan Changhong, Xu Hongfa.Triaxial tests on stress-strain of mud stone[J].Chinese Journal of Geotechnical Engineering, 2004, 26(6):863-865. [12] Khan S, Khraisheh M K.A new criterion for mixed mode fracture initiation based on the crack tip plastic core region[J].International Journal of Plasticity, 2004, 20(1):55-84.
[13] Shafique M A Khan, Marwan K Khraisheh.Analysis of mixed mode crack initiation angles under various loading conditions[J].Engineering Fracture Mechanics, 2000, 67(5):397-419.
[14] Maiti S K, Smith R A.Comparison of the criteria for mixed mode brittle fracture based on the preinstability stress-strain field:part Ⅰ:slit and elliptical cracks under uniaxial tensile loading[J].International Journal of Fracture, 1983, 23(4):281-295.
-
期刊类型引用(8)
1. 姜振学,梁志凯,申颍浩,唐相路,吴伟,李卓,薛子鑫,石学文,郭婕. 川南泸州地区页岩气甜点地质工程一体化关键要素耦合关系及攻关方向. 地球科学. 2023(01): 110-129 . 百度学术
2. 唐波涛,曾冀,陈伟华,陈一鑫,王涛,刘成,冯逢. 川中秋林地区致密砂岩水平井多簇射孔优化设计方法及应用效果. 油气藏评价与开发. 2022(02): 337-344 . 百度学术
3. 田福春,刘学伟,张胜传,张高峰,邵力飞,陈紫薇. 大港油田陆相页岩油滑溜水连续加砂压裂技术. 石油钻探技术. 2021(04): 118-124 . 本站查看
4. 王天驹,陈赞,王蕊,吴春方,徐鸿志,郝志伟. 致密砂岩油藏体积压裂簇间距优化新方法. 新疆石油地质. 2019(03): 351-356 . 百度学术
5. 黄进,吴雷泽,游园,黄晓凯,聂彬,张辉. 涪陵页岩气水平井工程甜点评价与应用. 石油钻探技术. 2016(03): 16-20 . 本站查看
6. 刘雨,艾池. 多级压裂诱导应力作用下天然裂缝开启规律研究. 石油钻探技术. 2015(01): 20-26 . 本站查看
7. 曾青冬,姚军. 基于颗粒流的页岩破裂机理试验研究. 石油钻探技术. 2015(01): 33-37 . 本站查看
8. 赵崇镇. 深层砂砾岩水平井组立体缝网压裂优化技术. 石油钻探技术. 2014(05): 95-99 . 本站查看
其他类型引用(6)
计量
- 文章访问数: 3359
- HTML全文浏览量: 87
- PDF下载量: 3784
- 被引次数: 14