低温下物理和化学激发对矿渣活性的影响研究

郭胜来, 李建华, 步玉环

郭胜来, 李建华, 步玉环. 低温下物理和化学激发对矿渣活性的影响研究[J]. 石油钻探技术, 2013, 41(3): 31-34. DOI: 10.3969/j.issn.1001-0890.2013.03.006
引用本文: 郭胜来, 李建华, 步玉环. 低温下物理和化学激发对矿渣活性的影响研究[J]. 石油钻探技术, 2013, 41(3): 31-34. DOI: 10.3969/j.issn.1001-0890.2013.03.006
Guo Shenglai, Li Jianhua, Bu Yuhuan. Effect of Physical and Chemical Excitation on Slag Activity under Low Temperature[J]. Petroleum Drilling Techniques, 2013, 41(3): 31-34. DOI: 10.3969/j.issn.1001-0890.2013.03.006
Citation: Guo Shenglai, Li Jianhua, Bu Yuhuan. Effect of Physical and Chemical Excitation on Slag Activity under Low Temperature[J]. Petroleum Drilling Techniques, 2013, 41(3): 31-34. DOI: 10.3969/j.issn.1001-0890.2013.03.006

低温下物理和化学激发对矿渣活性的影响研究

基金项目: 

国家高技术研究发展计划("863"计划)项目"海上大位移井钻完井关键技术开发与集成"(编号:2012AA091501)和教育部"长江学者和创新团队发展计划"项目"海洋油气井钻完井理论与工程"(编号:IRT1086)资助。

详细信息
    作者简介:

    郭胜来(1986—),男,河北衡水人,2008年毕业于中国石油大学(华东)石油工程专业,油气井工程专业在读博士研究生,主要从事固井、完井技术方面的研究。

  • 中图分类号: TE256+.6

Effect of Physical and Chemical Excitation on Slag Activity under Low Temperature

  • 摘要: 低温条件下矿渣活性低、水化慢。为提高低温下矿渣的活性,通过室内试验,测试了物理粉磨对矿渣粒径分布和矿渣水泥石强度的影响、化学激发剂对矿渣水泥石强度的影响,研究了物理激发和化学激发对矿渣活性的影响。研究表明,粉磨后矿渣的比表面积由0.718 m2/cm3增大到2.181 m2/cm3,水泥石在10 ℃温度下养护24 h的抗压强度由0 MPa增至6.6 MPa;随着化学激发剂 JFJ-1 加量的增加,矿渣水泥的抗压强度先增大后减小,JFJ-1 的最优加量为4%。养护温度为10 ℃时,采用矿渣配制的密度为1.30 kg/L的低密度矿渣水泥浆体系养护24 h后的水泥石强度达6.8 MPa,渗透率0.014 5 mD。而相同的养护温度下,密度为1.92 kg/L的G级水泥浆养护24 h后的水泥石强度为1 MPa,渗透率为0.044 2 mD。由此可知,物理粉磨及化学激发剂对矿渣的活性均有较好的提高效果。
    Abstract: Slag has slow hydration rate and low activity at low temperature.To significantly improve the activity of slag at low temperature,the effect of physical flour grinding on the particle size of slag,compressive strength of slag slurry,and the effect of chemical activator on the compressive strength of the slag slurry were studied.After grinding,the specific surface area of the slag increased from 0.718 m2/cm3 to 2.181 m2/cm3,and the compressive strength increased from 0 to 6.6 MPa for cured slag at 10 ℃ for 24 h.The compressive strength of the slag slurry increased first then dropped as the amount of chemical activator JFJ-1 increased,and the optimal percentage of JFJ-1 is 4%.The compressive strength of the low density slag cement system of 1.30 kg/L reached 6.8 MPa with JFJ-1 cured at 10 ℃ for 24 hours,and the permeability of the cement was 0.014 5 mD.The compressive strength of the class G cement system with the density of 1.92 kg/L reached 1 MPa after cured at 10 ℃ for 24 hours,and the permeability of the cement was 0.044 2 mD.Both physical flour grinding and chemical activator can improve the activity of the slag at low temperature.
  • [1] 王瑞和,王成文,步玉环,等.深水固井技术研究进展[J].中国石油大学学报:自然科学版,2008,32(1):77-81. Wang Ruihe,Wang Chengwen,Bu Yuhuan,et al.Research development of deepwater cementing technique[J].Journal of China University of Petroleum:Edition of Natural Science,2008,32(1):77-81.
    [2] 王成文,王瑞和,卜继勇,等.深水固井面临的挑战和解决方法[J].钻采工艺,2006,29(3):11-14. Wang Chengwen,Wang Ruihe,Pu Jiyong,et al.Problems existent in deepwater cementing and its solution[J].Drilling Production Technology,2006,29(3):11-14.
    [3] 王成文,王瑞和,步玉环,等.深水固井水泥性能及水化机理[J].石油学报,2009,30(2):280-284. Wang Chengwen,Wang Ruihe,Bu Yuhuan,et al.Properties and hydration mechanism of deepwater cementing system[J].Acta Petrolei Sinica,2009,30(2):280-284.
    [4] 路宁.低密度高炉矿渣水泥浆固井技术[J].石油学报,1999,20 (6):87-90. Lu Ning.A study on lightweight BFS cement slurry cementing technology[J].Acta Petrolei Sinica,1999,20(6):87-90.
    [5] 路宁,王文斌.高炉矿渣激活剂 BES-1[J].钻井液与完井液,1997,14(2):18-20. Lu Ning,Wang Wenbin.Study on activator BES-1 for blast furnace slag[J].Drilling Fluid Completion Fluid,1997,14(2):18-20.
    [6] 王晴,刘磊,吴昌鹏,等.矿渣基无机矿物聚合材料力学性能的研究[J].沈阳建筑大学学报:自然科学版,2007,23(1):73-75. Wang Qing,Liu Lei,Wu Changpeng,et al.Research on mechanical propertity of slag based geopolymer[J].Journal of Shenyang Jianzhu University:Natural Science,2007,23(1):73-75.
    [7] 张景富,俞庆森,徐明,等.G级油井水泥的水化及硬化[J].硅酸盐学报,2002,30(2):167-171,177. Zhang Jingfu,Yu Qingsen,Xu Ming,et al.Hydration and hardening of class G oil well cement[J].Journal of the Chinese Ceramic Society,2002,30(2):167-171,177.
    [8] 杨南如.碱胶凝材料形成的物理化学基础:Ⅰ[J].硅酸盐学报,1996,24(2):209-215. Yang Nanru.The base of physical chemistry of alkali cementitious materials:Ⅰ[J].Journal of the Chinese Ceramic Society,1996,24(2):209-215.
    [9] 杨南如.碱胶凝材料形成的物理化学基础:Ⅱ[J].硅酸盐学报,1996,24(4):459-465. Yang Nanru.The base of physical chemistry of alkali cementitious materials:Ⅱ[J].Journal of the Chinese Ceramic Society,1996,24(4):459-465.
    [10] 吴达华,吴永革,林蓉.高炉水淬矿渣结构特性及水化机理[J].石油钻探技术,1997,25(1):31-33. Wu Dahua,Wu Yongge,Lin Rong.Structure characters of blast furnace water quenched slag and its hydration mechanism[J].Petroleum Drilling Techniques,1997,25(1):31-33.
    [11]

    Nahm J J,Javanmardi K,Cowan K M,et al.Slag mix mud conversion cementing technology:reduction of mud disposal volumes and management of rigsite drilling wastes.SPE 25988,1993.

    [12]

    Funk J E,Dinger D R.Particle packing:part I:funamentals of particle packing monodisperse sphers[J].Interceram,1992,41(1):10-14.

    [13] 黄柏宗.紧密堆积理论的微观机理及模型设计[J].石油钻探技术,2007,35(1):5-12. Huang Bozong.Microscopic mechanisms and model design of close packing theory[J].Petroleum Drilling Techniques,2007,35(1):5-12.
计量
  • 文章访问数:  3177
  • HTML全文浏览量:  67
  • PDF下载量:  3824
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-28
  • 修回日期:  2013-05-02
  • 刊出日期:  1899-12-31

目录

    /

    返回文章
    返回