Experimental Study of a Dual-Action Inhibitor Impeding Hydrate Aggregation and Adhesion to Borehole Wall
-
摘要:
水合物颗粒聚集及粘附井壁是深水作业中井筒堵塞的重要原因。为探究不同因素对水合物颗粒聚集及粘附管壁的影响,采用水合物颗粒间相互作用力测试装置,分析了温度、接触时间及环境介质对环戊烷水合物颗粒间内聚力及其与管壁粘附力的作用规律;结合水合物堵塞评价试验,考察了椰油酰胺类表面活性剂DEA抑制水合物聚集与粘附的效果。结果表明:水合物颗粒间内聚力及颗粒与壁面粘附力随着温度升高和接触时间增长而增大,且在空气中的内聚力和粘附力显著高于在液态环戊烷中;水合物颗粒与疏水壁面的粘附力最小。DEA在液态环戊烷和空气中均能有效降低水合物颗粒间内聚力及颗粒与壁面粘附力,加量为0.5%时,内聚力分别降低51%和53%,粘附力分别降低82%和60%。在低温高压条件下,DEA可有效抑制水合物的聚集与粘附。研究表明,DEA与深水水基钻井液的配伍性良好,可作为深水钻井液用双效水合物抑制剂。
Abstract:Aggregation between hydrate particles and adhesion to the borehole wall are important causes of wellbore plugging during deepwater operations. In order to investigate the effects of different factors on the aggregation of hydrate particles and adhesion to the borehole wall, the effects of temperature, contact time, and environmental medium on the cohesive force between cyclopentane hydrate particles and their adhesive force to the borehole wall were analyzed with the help of a hydrate particle interaction force test device, and the effects of the cocamide surfactant DEA on the inhibition of hydrate aggregation and adhesion were investigated with combination of hydrate clogging evaluation experiments. The results show that the cohesive force between hydrate particles and the adhesive force between particles and walls increase as temperature and contact time increase; the interaction forces in air are higher than those in liquid-phase cyclopentane; the hydrate particles show the smallest adhesive force to hydrophobic surfaces. DEA can effectively reduce the cohesive force between hydrate particles and the adhesive force between particles and the wall in both liquid-phase cyclopentane and air. At a concentration of 0.5%, it reduces the cohesive force by 51% and 53% and the adhesive force by 82% and 60%, respectively. In the high-pressure and low-temperature conditions, it can inhibit the aggregation and adhesion of hydrates. The results show that DEA has good compatibility with deepwater water-based drilling fluid and it can be used as a dual-action hydrate inhibitor for deepwater drilling fluids.
-
-
表 1 DEA与深水水基钻井液配伍性评价结果
Table 1 Compatibility evaluation results of DEA and deepwater water-based drilling fluid
DEA加量,% 温度/℃ 表观黏度/(mPa·s) 塑性黏度/(mPa·s) 动切力/Pa 动塑比 静切力/Pa API滤失量/mL 初切 终切 0 25 36.0 23 13.0 0.57 5 12 5.4 2 46.5 30 16.5 0.55 6 14 4.8 0.5 25 40.5 27 13.5 0.50 5 13 5.8 2 53.0 35 18.0 0.51 7 15 5.0 -
[1] 吴艳辉,代锐,张磊,等. 深水井筒海水聚合物钻井液水合物生成抑制与堵塞物处理方法[J]. 钻井液与完井液,2023,40(4):415–422. doi: 10.12358/j.issn.1001-5620.2023.04.001 WU Yanhui, DAI Rui, ZHANG Lei, et al. Study on methods of gas hydrate inhibition and blockage treatment using seawater polymer muds in deepwater well drilling[J]. Drilling Fluid & Completion Fluid, 2023, 40(4): 415–422. doi: 10.12358/j.issn.1001-5620.2023.04.001
[2] 赵欣,李孙博,马永乐,等. 一种海域天然气水合物钻井用相变控温微胶囊[J]. 天然气工业,2023,43(7):72–78. doi: 10.3787/j.issn.1000-0976.2023.07.008 ZHAO Xin, LI Sunbo, MA Yongle, et al. Temperature-regulating phase change material microcapsule used in marine gas hydrate drilling[J]. Natural Gas Industry, 2023, 43(7): 72–78. doi: 10.3787/j.issn.1000-0976.2023.07.008
[3] 刘智勤,徐加放,彭巍,等. 陵水区块超深水高性能恒流变油基钻井液技术[J]. 钻井液与完井液,2024,41(2):184–190. doi: 10.12358/j.issn.1001-5620.2024.02.007 LIU Zhiqin, XU Jiafang, PENG Wei, et al. A high performance constant rheology oil based drilling fluid for ultra deep water drilling in Lingshui block[J]. Drilling Fluid & Completion Fluid, 2024, 41(2): 184–190. doi: 10.12358/j.issn.1001-5620.2024.02.007
[4] 张剑波,孙小辉,单正锋,等. 海域天然气水合物试采井筒中水合物二次生成风险预测及防治[J]. 中国石油大学学报(自然科学版),2022,46(6):31–40. doi: 10.3969/j.issn.1673-5005.2022.06.004 ZHANG Jianbo, SUN Xiaohui, SHAN Zhengfeng, et al. Prediction and prevention of hydrate reformation risk in trail production pipes of offshore natural gas hydrate[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(6): 31–40. doi: 10.3969/j.issn.1673-5005.2022.06.004
[5] 王金铎,王宴滨,贺子磬,等. 气侵条件下深水钻井井筒温压耦合场分布规律研究[J]. 石油钻探技术,2024,52(6):50–61. WANG Jinduo, WANG Yanbin, HE Ziqing, et al. Temperature and pressure coupling field distribution law in deepwater drilling wellbore under gas kick[J]. Petroleum Drilling Techniques, 2024, 52(6): 50–61.
[6] ALBORZI G, SEAL H, AZARINEZHAD R, et al. What to learn from a hydrate remediation operation in a west-African deep-water production well?[R]. OTC 35321, 2024.
[7] 余意,王雪瑞,柯珂,等. 极地钻井井筒温度压力预测模型及分布规律研究[J]. 石油钻探技术,2021,49(3):11–20. doi: 10.11911/syztjs.2021047 YU Yi, WANG Xuerui, KE Ke, et al. Prediction model and distribution law study of temperature and pressure of the wellbore in drilling in Arctic region[J]. Petroleum Drilling Techniques, 2021, 49(3): 11–20. doi: 10.11911/syztjs.2021047
[8] 赵欣,邱正松,黄维安,等. 天然气水合物热力学抑制剂作用机制及优化设计[J]. 石油学报,2015,36(6):760–766. doi: 10.7623/syxb201506014 ZHAO Xin, QIU Zhengsong, HUANG Weian, et al. Inhibition mechanism and optimized design of thermodynamic gas hydrate inhibitors[J]. Acta Petrolei Sinica, 2015, 36(6): 760–766. doi: 10.7623/syxb201506014
[9] BADI D, AL HELAL A, LAGAT C, et al. Influence of injecting some chemicals on MEG inhibition performance for less recycled MEG[J]. Energy & Fuels, 2023, 37(9): 6865–6873.
[10] 唐翠萍,张雅楠,梁德青,等. 聚乙烯己内酰胺链端改性及其对甲烷水合物形成的抑制作用研究[J]. 化工学报,2022,73(5):2130–2139. TANG Cuiping, ZHANG Yanan, LIANG Deqing, et al. Inhibition effect of chain end modified polyvinyl caprolactam on methane hydrate formation[J]. CIESC Journal, 2022, 73(5): 2130–2139.
[11] 牛洪波,于政廉,孙菁,等. 天然气水合物动力学抑制剂与水分子相互作用研究[J]. 石油钻探技术,2019,47(4):29–34. doi: 10.11911/syztjs.2019037 NIU Hongbo, YU Zhenglian, SUN Jing, et al. The interaction between gas hydrate kinetics inhibitors and water molecules[J]. Petroleum Drilling Techniques, 2019, 47(4): 29–34. doi: 10.11911/syztjs.2019037
[12] KELLAND M A. History of the development of low dosage hydrate inhibitors[J]. Energy & Fuels, 2006, 20(3): 825–847.
[13] SLOAN E D, Jr. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426(6964): 353–363. doi: 10.1038/nature02135
[14] ISMAIL N A, DELGADO-LINARES J G, KOH C A. Microscale evaluation of natural anti-agglomeration behavior of oils via gas hydrate interparticle cohesive force measurements[J]. Fuel, 2023, 335: 126959. doi: 10.1016/j.fuel.2022.126959
[15] CHUA Peicheng, KELLAND M A. Study of the gas hydrate antiagglomerant performance of a series of mono- and bis-amine oxides: dual antiagglomerant and kinetic hydrate inhibition behavior[J]. Energy & Fuels, 2018, 32(2): 1674–1684.
[16] 李锐,宁伏龙,张凌,等. 低剂量水合物抑制剂的研究进展[J]. 石油化工,2018,47(2):203–210. doi: 10.3969/j.issn.1000-8144.2018.02.016 LI Rui, NING Fulong, ZHANG Ling, et al. Progress in the research of the low dosage hydrate inhibitors[J]. Petrochemical Technology, 2018, 47(2): 203–210. doi: 10.3969/j.issn.1000-8144.2018.02.016
[17] 董三宝,田茂琳,徐遥远,等. 天然气水合物防聚剂研究进展[J]. 广东化工,2021,48(10):82–85. doi: 10.3969/j.issn.1007-1865.2021.10.029 DONG Sanbao, TIAN Maolin, XU Yaoyuan, et al. Progress in the investigation of natural gas hydrate anti-agglomerants[J]. Guangdong Chemical Industry, 2021, 48(10): 82–85. doi: 10.3969/j.issn.1007-1865.2021.10.029
[18] SHI Lingli, HE Yong, LU Jingsheng, et al. Effect of dodecyl dimethyl benzyl ammonium chloride on CH4 hydrate growth and agglomeration in oil-water systems[J]. Energy, 2020, 212: 118746. doi: 10.1016/j.energy.2020.118746
[19] SUN Minwei, FIROOZABADI A. Gas hydrate powder forma-tion–ultimate solution in natural gas flow assurance[J]. Fuel, 2015, 146: 1–5. doi: 10.1016/j.fuel.2014.12.078
[20] SHI Lingli, HE Yong, LU Jingsheng, et al. Anti-agglomeration evaluation and Raman spectroscopic analysis on mixed biosurfactants for preventing CH4 hydrate blockage in n-octane + water systems[J]. Energy, 2021, 229: 120755. doi: 10.1016/j.energy.2021.120755
[21] 马楠,魏士鹏,赵阳,等. 深水开采变向管柱内水合物颗粒运移沉积规律[J]. 中国海上油气,2025,37(1):167–175. MA Nan, WEI Shipeng, ZHAO Yang, et al. Migration and deposition laws of hydrate particles in redirecting pipe for deep-water exploitation[J]. China Offshore Oil and Gas, 2025, 37(1): 167–175.
[22] SUN Minwei, FIROOZABADI A. New surfactant for hydrate anti-agglomeration in hydrocarbon flowlines and seabed oil capture[J]. Journal of Colloid and Interface Science, 2013, 402: 312–319. doi: 10.1016/j.jcis.2013.02.053
[23] BROWN E, HU Sijia, WANG Shenglong, et al. Low-adhesion coatings as a novel gas hydrate mitigation strategy[R]. OTC 27874, 2017.
[24] FAN Shuanshi, ZHANG Hao, YANG Guang, et al. Reduction clathrate hydrates growth rates and adhesion forces on surfaces of inorganic or polymer coatings[J]. Energy & Fuels, 2020, 34(11): 13566–13579.
[25] ZHAO Xin, FANG Qingchao, QIU Zhengsong, et al. Experimental investigation on hydrate anti-agglomerant for oil-free systems in the production pipe of marine natural gas hydrates[J]. Energy, 2022, 242: 122973. doi: 10.1016/j.energy.2021.122973
[26] 赵欣,耿麒,邱正松,等. 深水高孔高渗储层免破胶钻井完井液技术[J]. 天然气工业,2021,41(4):107–114. doi: 10.3787/j.issn.1000-0976.2021.04.012 ZHAO Xin, GENG Qi, QIU Zhengsong, et al. Gel-breaking free drill-in fluid technology for deepwater high-porosity and high-permeability reservoirs[J]. Natural Gas Industry, 2021, 41(4): 107–114. doi: 10.3787/j.issn.1000-0976.2021.04.012
[27] 李怀科,张伟,马跃. 深水窄密度窗口钻井液技术改进及现场应用[J]. 油田化学,2018,35(2):209–213. LI Huaike, ZHANG Wei, MA Yue. Technology improvement and field application of deep water drilling fluid for narrow drilling window[J]. Oilfield Chemistry, 2018, 35(2): 209–213.
-
期刊类型引用(5)
1. 朱方辉,郑力会,王宪文,王治国,魏攀峰,陶秀娟. 地质-工程-材料参数融合提高低压气井单井作业一次成功率. 石油钻采工艺. 2024(06): 667-680 . 百度学术
2. 王克林,刘洪涛,何文,何新兴,高文祥,单锋. 库车山前高温高压气井完井封隔器失效控制措施. 石油钻探技术. 2021(02): 61-66 . 本站查看
3. 康红兵,牛骋程,贾虎,高定祥,代昌楼. 顺北油田抗超高温柔性胶粒修井液. 钻井液与完井液. 2021(04): 525-530 . 百度学术
4. 罗有刚,巨亚锋,王尚卫,杨义兴,江智强,王嘉鑫. 纳米复合泡沫凝胶修井液的研制与试验. 钻井液与完井液. 2020(01): 127-132 . 百度学术
5. 赵全民,何汉平,何青水,陈向军,王宝峰. 哈萨克斯坦SIPC油田开发主要问题与技术对策. 石油钻探技术. 2019(04): 92-96 . 本站查看
其他类型引用(2)