Study on Gas-Liquid Gravity Displacement Law of Constant-Volume Enclosed System in Fractured Gas-Bearing Beds
-
摘要:
在裂缝性气层钻进过程中,气液重力置换问题频发,严重威胁钻井安全,但目前的研究主要针对裂缝性定压气层,对定容封闭体气层气液重力置换问题研究较少。为此,研制了井筒−裂缝气液两相流体耦合流动可视化试验装置,开展了裂缝性定容封闭体气液重力置换模拟试验,分析了裂缝开度、井底压差、钻井密度和黏度对气液重力置换的影响。研究结果表明,井底压差是影响气液流动状态的主导因素,随着地层能量被释放,井底欠压差越来越小,井底会经历由气侵到气液重力置换,再到井漏的转化;气液重力置换只在一定的压差范围内出现,井底欠压差越大,气侵速率越大,漏失速率越小;裂缝开度和密度越大,气侵速率和漏失速率也越大;随着钻井液黏度升高,气侵速率和漏失速率显著降低。据此建立了气侵速率和漏失速率的多因素经验预测模型,明确气侵与漏失的主控因素分别是井底压差和裂缝开度,并提出了气液重力置换的防控方法。研究结果为钻遇裂缝性定容封闭体气层时的井筒流动安全控制提供了理论依据。
Abstract:Gas-liquid gravity displacement problems occur frequently during drilling in fractured gas-bearing beds, seriously threatening drilling safety. However, the current research mainly focuses on fractured constant-pressure gas-bearing beds and does not pay much attention to the gas-liquid gravity displacement problem in gas-bearing beds with constant-volume enclosed system. To this end, a visual experimental device for the coupled flow of gas-liquid two-phase fluids in the wellbore and fractures was developed, and simulation experiments of gas-liquid gravity displacement in fractured constant-volume enclosed systems were carried out. The effects of fracture aperture, bottom hole differential pressure, drilling density, and viscosity on gas-liquid gravity displacement were evaluated. The results show that the bottom hole differential pressure, is the dominant factor affecting the gas-liquid flow state, and with the formation energy being released, the bottom hole under-differential pressure is getting smaller and smaller. The well bottom undergoes the transformation from gas invasion to gas-liquid gravity displacement and then to lost circulation. Gas-liquid gravity displacement only occurs within a certain range of differential pressure, and a larger bottom hole under-differential pressure indicates a larger gas invasion rate and a smaller lost circulation rate. Larger fracture aperture and density mean larger gas invasion rate and lost circulation rate. With the increase in the viscosity of the drilling fluid, the gas invasion rate and lost circulation rate decrease significantly. A multi-factor empirical prediction model of gas invasion rate and lost circulation rate was established, and the main controlling factors of gas invasion and lost circulation are bottom hole differential pressure and fracture aperture, respectively; moreover, the prevention and control method of gas-liquid gravity replacement was proposed. The results provide a theoretical basis for the safety control of wellbore flow when drilling a fractured constant-volume enclosed system gas-bearing bed.
-
-
表 1 定容封闭体气层和定压气层的差异
Table 1 Differences between constant-volume enclosed system gas-bearing bed and constant-pressure gas-bearing bed
气层分类 外部压力补给 边界与体积 地层压力 定容封闭体 无 有限边界/体积 随时间显著变化 定压气层 有 无限大边界/体积 短期内恒定 -
[1] 李中. 渤海深层探井钻井关键技术现状及展望[J]. 钻采工艺,2024,47(2):35–41. doi: 10.3969/J.ISSN.1006-768X.2024.02.05 LI Zhong. Challenges and technology trends prediction of deep exploration well drilling in Bohai Sea[J]. Drilling & Production Technology, 2024, 47(2): 35–41. doi: 10.3969/J.ISSN.1006-768X.2024.02.05
[2] 徐鲲,陶林,李文龙,等. 渤海油田变质岩潜山油藏钻井关键技术[J]. 石油钻探技术,2023,51(3):16–21. doi: 10.11911/syztjs.2023070 XU Kun, TAO Lin, LI Wenlong, et al. Key drilling technologies for metamorphic buried hill reservoirs in Bohai Oilfield[J]. Petroleum Drilling Techniques, 2023, 51(3): 16–21. doi: 10.11911/syztjs.2023070
[3] 张晓诚,霍宏博,林家昱,等. 渤海油田裂缝性油藏地质工程一体化井漏预警技术[J]. 石油钻探技术,2022,50(6):72–77. doi: 10.11911/syztjs.2022025 ZHANG Xiaocheng, HUO Hongbo, LIN Jiayu, et al. Integrated geology-engineering early warning technologies for lost circulation of fractured reservoirs in Bohai Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(6): 72–77. doi: 10.11911/syztjs.2022025
[4] 张辉,谭绍栩,霍通达,等. 渤海特高孔渗储层控水防砂一体化完井技术[J]. 石油钻探技术,2024,52(1):107–113. doi: 10.11911/syztjs.2024015 ZHANG Hui, TAN Shaoxu, HUO Tongda, et al. Integrated completion technology of water and sand control in reservoirs with extra-high porosity and permeability in Bohai Oilfield[J]. Petroleum Drilling Techniques, 2024, 52(1): 107–113. doi: 10.11911/syztjs.2024015
[5] 李战奎,吴立伟,郭明宇,等. 渤中凹陷深层高压井地质工程一体化技术研究与应用[J]. 石油钻探技术,2024,52(2):194–201. doi: 10.11911/syztjs.2024031 LI Zhankui, WU Liwei, GUO Mingyu, et al. Research and application of integrated geological engineering technology for deep high-pressure wells in the Bozhong Sag[J]. Petroleum Drilling Techniques, 2024, 52(2): 194–201. doi: 10.11911/syztjs.2024031
[6] PETERSEN J, ROMMETVEIT R, TARR B A. Kick with lost circulation simulator, a tool for design of complex well control situations[R]. SPE 49956, 1998.
[7] 刘绘新,李锋. 裂缝性储层井控技术体系探讨[J]. 天然气工业,2011,31(6):77–80. doi: 10.3787/j.issn.1000-0976.2011.06.016 LIU Huixin, LI Feng. Well control technologies for fractured gas reservoirs[J]. Natural Gas Industry, 2011, 31(6): 77–80. doi: 10.3787/j.issn.1000-0976.2011.06.016
[8] 谭涛,郭臣,陈勇,等. 高温高压缝洞型油藏注N2驱提高采收率机理研究及实践[J]. 油气藏评价与开发,2020,10(2):60–64. TAN Tao, GUO Chen, CHEN Yong, et al. Study and practice on mechanism of EOR by N2 flooding in fractured-vuggy reservoirs with high temperature and high pressure[J]. Petroleum Reservoir Evaluation and Development, 2020, 10(2): 60–64.
[9] 蔡文军,李中,殷志明,等. 基于地质工程一体化的裂缝性地层漏失压力预测[J]. 断块油气田,2024,31(4):676–683. CAI Wenjun, LI Zhong, YIN Zhiming, et al. Prediction of leakage pressure in fractured formation based on integration of geology and engineering[J]. Fault-Block Oil & Gas Field, 2024, 31(4): 676–683.
[10] 刘自龙,钱萧,刘超,等. 倾斜管不同黏度气液两相段塞流持液率实验及预测方法[J]. 特种油气藏,2024,31(4):156–162. doi: 10.3969/j.issn.1006-6535.2024.04.020 LIU Zilong, QIAN Xiao, LIU Chao, et al. Experiment and prediction method of liquid holdup of gas-liquid two-phase slug flow with different viscosity in inclined tube[J]. Special Oil & Gas Reservoirs, 2024, 31(4): 156–162. doi: 10.3969/j.issn.1006-6535.2024.04.020
[11] 范宇,黄维安,王月纯,等. 四川盆地西部地区超深井大尺寸井眼井壁失稳机理及防治对策[J]. 天然气工业,2024,44(12):116–127. doi: 10.3787/j.issn.1000-0976.2024.12.011 FAN Yu, HUANG Weian, WANG Yuechun, et al. Mechanism and control measures of wellbore instability of large-sized boreholes in ultra-deep wells in western Sichuan Basin[J]. Natural Gas Industry, 2024, 44(12): 116–127. doi: 10.3787/j.issn.1000-0976.2024.12.011
[12] 杨玉贵,蔡文军,幸雪松,等. 渤中区块破碎性地层井壁失稳机理及对策[J]. 科学技术与工程,2023,23(22):9476–9483. doi: 10.12404/j.issn.1671-1815.2023.23.22.09476 YANG Yugui, CAI Wenjun, XING Xuesong, et al. Mechanism and countermeasure of wellbore instability of fractured formation in Bozhong block[J]. Science Technology and Engineering, 2023, 23(22): 9476–9483. doi: 10.12404/j.issn.1671-1815.2023.23.22.09476
[13] 舒刚,孟英峰,李皋,等. 重力置换式漏喷同存机理研究[J]. 石油钻探技术,2011,39(1):6–11. doi: 10.3969/j.issn.1001-0890.2011.01.002 SHU Gang, MENG Yingfeng, LI Gao, et al. Mechanism of mud loss and well kick due to gravity displacement[J]. Petroleum Drilling Techniques, 2011, 39(1): 6–11. doi: 10.3969/j.issn.1001-0890.2011.01.002
[14] 张兴全,周英操,刘伟,等. 碳酸盐岩地层重力置换气侵特征[J]. 石油学报,2014,35(5):958–962. doi: 10.7623/syxb201405017 ZHANG Xingquan, ZHOU Yingcao, LIU Wei, et al. Characters of gravity replacement gas kick in carbonate formation[J]. Acta Petrolei Sinica, 2014, 35(5): 958–962. doi: 10.7623/syxb201405017
[15] 孔祥伟,林元华,邱伊婕. 控压钻井重力置换与溢流气侵判断准则分析[J]. 应用力学学报,2015,32(2):317–322. doi: 10.11776/cjam.32.02.A012 KONG Xiangwei, LIN Yuanhua, QIU Yijie. Research of mechanism for the gas invasion and gravity replacement in drilling operations[J]. Chinese Journal of Applied Mechanics, 2015, 32(2): 317–322. doi: 10.11776/cjam.32.02.A012
[16] 赵向阳,孟英峰,杨顺辉,等. 钻井液液压作用下裂缝性定容封闭体地层压力的变化规律[J]. 天然气工业,2018,38(6):91–96. doi: 10.3787/j.issn.1000-0976.2018.06.012 ZHAO Xiangyang, MENG Yingfeng, YANG Shunhui, et al. Changing laws of formation pressure of constant-volume fractured enclosed reservoirs under the hydraulic pressure of drilling fluid[J]. Natural Gas Industry, 2018, 38(6): 91–96. doi: 10.3787/j.issn.1000-0976.2018.06.012
[17] 路保平,侯绪田,邢树宾. 伊朗雅达油田沥青层置换机制与压力波动分析[J]. 中国石油大学学报(自然科学版),2017,41(6):88–93. doi: 10.3969/j.issn.1673-5005.2017.06.010 LU Baoping, HOU Xutian, XING Shubin. Asphalt displacement mechanism and pore pressure fluctuation in Yadavaran Oilfield, Iran[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(6): 88–93. doi: 10.3969/j.issn.1673-5005.2017.06.010
[18] LI Hongtao, LIANG Jie, JIA Hongjun, et al. Experimental and numerical investigation of gas–liquid gravity displacement in a horizontal well intersecting a vertical fracture[J]. Journal of Natural Gas Science and Engineering, 2020, 84: 103632. doi: 10.1016/j.jngse.2020.103632
[19] 戴成. 碳酸盐岩钻井井筒−裂缝耦合流动特征研究[D]. 成都:西南石油大学,2019. DAI Cheng. Research on coupling flowing characteristics of wellbore−fracture drilling in carbonate formation[D]. Chengdu: Southwest Petroleum University, 2019.
[20] 李军,柳贡慧,周刘杰,等. 碳酸盐岩裂缝性地层气液重力置换实验[J]. 石油学报,2018,39(10):1186–1192. doi: 10.7623/syxb201810010 LI Jun, LIU Gonghui, ZHOU Liujie, et al. Gas-liquid gravity displacement experiment of fractured carbonate formation[J]. Acta Petrolei Sinica, 2018, 39(10): 1186–1192. doi: 10.7623/syxb201810010
[21] 周刘杰. 碳酸盐岩地层气液重力置换溢漏规律研究[D]. 北京:中国石油大学(北京),2017. ZHOU Liujie. Research of well kick and loss circulation rule of gas-liquid gravity displacement on carbonate formation[D]. Beijing: China University of Petroleum(Beijing), 2017.
[22] 宋亚港. 碳酸盐岩地层溢漏同存井筒多相流状态及井筒压力控制方法研究[D]. 北京:中国石油大学(北京),2023. SONG Yagang. Study on multiphase flow state and control method of wellbore pressure in carbonate rock formation[D]. Beijing: China University of Petroleum(Beijing), 2023.
[23] 王存新,许佳欣,李勇,等. 窄安全密度窗口重力置换漏喷函数研究[J]. 西南石油大学学报(自然科学版),2021,43(6):201–208. WANG Cunxin, XU Jiaxin, LI Yong, et al. The leakage function of gravity displacement in the narrow safety density window[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(6): 201–208.
[24] YANG Xu, LI Shengfu, LI Gao, et al. Visualization experiment on dynamic migration and sealing mechanism of irregular materials in rough fractures[J]. Geoenergy Science and Engineering, 2024, 242: 213251. doi: 10.1016/j.geoen.2024.213251
[25] YANG Xu, FENG Jiaxin, LI Gao, et al. Transport behavior of particles and evolution of plugging zones in rough fractures: Insights from a novel coupled CFD-DEM model[J]. Computers and Geotechnics, 2024, 173: 106553. doi: 10.1016/j.compgeo.2024.106553
[26] 鹿克峰,程超逸,邓雅婷,等. 多井同采定容气藏动态分析方法[J]. 世界石油工业,2023,30(6):79–87. LU Kefeng, CHENG Chaoyi, DENG Yating, et al. Dynamic analysis method of constant volume gas reservoir with multi-well production[J]. World Petroleum Industry, 2023, 30(6): 79–87.
[27] 董鹏举. 超深层裂缝性有水气藏采收率预测研究[D]. 北京:中国石油大学(北京), 2023. DONG Pengju. Prediction of recovery efficiency of ultra-deep fractured gas reservoir with water [D]. Beijing: China University of Petroleum(Beijing), 2023.
[28] SY/T 5386—2010 裂缝性油(气)藏探明储量计算细则[S]. SY/T 5386—2010 The regulations of proved reserves estimation for fractured oil and gas reservoir[S].
[29] 杨晓彤,康平,王安怡,等. 基于随机森林模型的四川盆地臭氧污染预测[J]. 环境科学,2024,45(5):2507–2515. YANG Xiaotong, KANG Ping, WANG Anyi, et al. Prediction of ozone pollution in Sichuan basin based on random forest model[J]. Environmental Science, 2024, 45(5): 2507–2515.
[30] LI Gao, LI Hongtao, MENG Yingfeng, et al. Reservoir characterization during underbalanced drilling of horizontal wells based on real-time data monitoring[J]. Journal of Applied Mathematics, 2014, 2014: 905079.
[31] 徐小峰. NP深层高温潜山冻胶阀控压钻井技术研究[D]. 成都:西南石油大学,2018. XU Xiaofeng. Study on managed pressure drilling technology with gel valve for np deep high temperature buried hill[D]. Chengdu: Southwest Petroleum University, 2018.
-
期刊类型引用(1)
1. 李宽,施山山,张新刚,王跃伟,许洁,张恒春. 干热岩定向钻井关键技术研究与应用. 钻采工艺. 2024(05): 7-14 . 百度学术
其他类型引用(0)