Innovation and Practice of Key Technologies for Drilling and Completion in Deepwater High-Pressure Gas Field of “Deep Sea No.1” Phase II Project
-
摘要:
“深海一号”二期工程深水高压气田钻完井作业面临水下井口集中、干涉风险高,深层地质条件复杂、可钻性差,压力窗口窄、井控挑战大,高温高压、长效生产保障难等多重挑战。为此,开展了集中式水下井口规模化作业、深水深层钻完井提速、深水高压井安全控制、深水长效生产保障等技术攻关,形成了以安全、提速、长效生产为核心的深水高压气田钻完井技术。该技术在“深海一号”二期工程12口开发井的现场应用表明,与一期工程相比,钻井速度大幅提升,作业效率全面提升,项目工期大幅缩短,有力支撑了“深海一号”二期工程深水高压气田的顺利投产。“深海一号”二期工程的顺利完成,标志着我国自营深水钻完井技术实现了重大突破,也为国内外深水高压气田开发提供了借鉴。
Abstract:The drilling and completion operations in deepwater oil and gas wells of the “Deep Sea No.1” Phase II project face multiple challenges such as concentrated underwater wellheads, high interference risks, complex deep geological conditions, poor drillability, narrow pressure windows, difficult well control, high-temperature and high-pressure, and difficulties in ensuring long-term production. To this end, technical researches on large-scale operation in centralized underwater wellheads, drilling speed increase in deep water and deep layer, deepwater high-pressure well safety control, and deepwater long-term production guarantee were carried out, and key technologies of drilling and completion in deepwater high-pressure gas fields with safety, speed increase, and long-term production as the core were formed. On-site applications in 12 development wells of the “Deep Sea No.1” Phase II project demonstrate that the drilling speed has been greatly improved, and the operating efficiency has been comprehensively enhanced compared with that in the Phase Ⅰ project. The project duration has been greatly shortened, which strongly supports the smooth production of the deepwater high-pressure gas field of the “Deep Sea No.1” Phase II project. The successful completion of the “Deep Sea No.1” Phase II Project marks a great breakthrough in self-operated deepwater drilling and completion technologies in China and provides technical reference for the development of deepwater high-temperature and high-pressure gas fields in China and abroad.
-
近年来,火成岩油气藏已成为勘探开发的新领域,有望成为油气资源新的增长点[1-2],但火成岩具有岩性复杂多变、致密坚硬、可钻性差、研磨性高等特点[3-5],导致钻井速度慢,成本高,严重制约了火成岩油气藏的高效开发。岩石的可钻性和研磨性是优化钻井设计的依据[6-9],已经形成了一套定量评价岩石可钻性的行业标准,但岩石研磨性的测定方法还未统一[10-12]。目前,测定岩石研磨性的方法可分为磨铣法和钻孔法2大类:磨铣法的特点是工具在岩石表面作摩擦运动,反映岩石的研磨性,适合用来研究岩石研磨性机理,国内外研究者多采用该方法;钻孔法接近实钻工况,多用于预测钻井工具的寿命或磨损量。研磨性测试采用的标准件有青铜棒、低碳钢棒、银亮钢、硬质合金和铜针等金属材料[13],这些金属材料易产生粘连,在坚硬质密的火成岩上易发生打滑现象,不能反映钻头研磨火成岩的本质。因此,研究火成岩研磨性的定量评价方法具有十分重要的意义。本文以特制的金刚石孕镶块为研磨标准件,通过试验测定了常见火成岩岩样的研磨性,分析了火成岩岩样研磨性与其物理力学参数之间的关系,建立了火成岩研磨性预测模型,以便为高效开发火成岩油气藏钻头选型和优化钻井设计提供依据。
1. 研磨性试验
1.1 试验方法及装置
自主设计了一套新型岩石研磨性试验装置,该试验装置主要包括控制系统、加压系统、旋转系统、试验钻头、转盘系统和冷却系统,如图1所示。采用钻–磨法测试岩样的研磨性:钻,即试验钻头在旋转系统和加压系统的共同作用下自转,以一定的转速(n)和钻压(W)钻进岩样;磨,即转盘系统带动岩样回转,试验钻头相对岩样公转,标准件磨削岩石表面。钻–磨法中,自转模拟钻头的钻进过程,公转有利于提高研磨性试验的效率,试验后的岩样表面为规整的圆面,保证了岩心的完整性,起到了节省岩心的作用。试验原理如图2所示。
1.2 试验标准件
以663青铜粉作为胎体材料,人造金刚石粉作为骨架材料,采用冷压烧结工艺,制作了洛氏硬度HRC40的研磨标准件,为直径8.0 mm、长13.0 mm的圆柱体。研磨标准件具有以下特点:1)具有足够的强度,能承受轴向力和切向力;2)耐磨性低,能快速磨损,以便在短时间内测定其磨损量;3)具有自锐性,可以吃入火成岩,反映标准件研磨火成岩的本质。
1.3 试验参数优选
选用斜长花岗岩(可钻性级值6.09)和玄武岩(可钻性级值8.40)为试验岩样,岩样转速固定为8 r/min,在不同钻头转速(95,150,198,232和314 r/min)和不同钻压(400,600和800 N)下进行研磨试验,以优选钻头转速;固定钻头转速,在不同钻压(200,400,600,800和1 000 N)下进行研磨试验,以优选钻压。每种岩样试验3次后取平均值,每次试验10 min,结果如图3—图5所示。
从图3、图4可以看出:当钻压一定时,岩样和标准件的磨损量均随钻头转速增大而增大;当钻头转速小于198 r/min时,2种岩样磨损量的增加幅度较大;钻头转速大于198 r/min时,岩样磨损量的增加幅度减小,并趋于平稳;标准件磨损量在2种岩样的变化规律与岩样磨损量大致相当,均在钻头转速为198 r/min时出现拐点。其原因是:当钻压一定、钻头转速较小时,标准件与岩样的摩擦路程较小,岩样与标准件的磨损量都较小;当钻头转速较大时,标准件与岩石的摩擦路程增长,岩样磨损量增大,产生的岩屑增多,对标准件造成了重复磨损。为了测试岩石的纯研磨性,钻头转速选择198 r/min。
从图5可以看出,钻头转速为198 r/min时,2种岩样和标准件的磨损量均随钻压增大而增大,但在钻压增至800 N时增大幅度变得很小。其原因是:随着钻压增大,岩样与标准件之间的摩擦力不断增大,岩石和标准件的磨损量不断增大;但钻压过大时,标准件表面的金刚石很快被磨钝,导致岩样进尺减小,标准件的磨损量也随之减小。为了保证岩样和标准件都有明显的磨损,钻压选择800 N。
1.4 指标优选及数据处理
收集了斜长花岗岩、花岗斑岩和石英正长岩等10种常见的火成岩岩样,在钻压800 N、钻头转速198 r/min和岩样转速8 r/min条件下测试了这些岩样的研磨性,每次测试5 min,每种岩样测试5次。每次研磨后用精度为0.02 mm的游标卡尺测量岩样破碎高度和标准件磨损高度并记录,用精度0.001 g的电子天平测量标准件的磨损质量并记录。岩石的研磨性为其固有属性,为了进行量化比较,采用标准件磨损质量与岩样破碎量之比、标准件磨损质量与岩样破碎体积之比和单位时间内标准件磨损质量这3个研磨性指标对其进行量化评价,用这3个指标分别从研磨性指标数值的变化范围和均值2个方面对比分析每种岩样的研磨性。分析发现:标准件磨损质量与岩样破碎量之比不能有效区分花岗斑岩和石英正长岩的研磨性,研磨性范围重叠;标准件磨损质量与岩样破碎体积之比能够将每种岩样的研磨性区分开,具有很高的分辨率;根据单位时间内标准件磨损质量分析出的研磨性范围重叠严重,分辨率最差。因此,采用标准件磨损质量与岩样破碎体积之比作为评价火成岩研磨性的指标(简记为“研磨性指标”),计算公式为:
ω=ΔmΔV (1) 式中:ω为岩石的研磨性指标,mg/cm3;Δm为标准件磨损质量,mg;ΔV为岩石破碎体积,cm3。
斜长花岗岩、花岗斑岩、石英正长岩、石英二长岩、花岗二长岩、英安岩、花岗正长岩、角闪辉长岩、花岗闪长岩和玄武岩等10种常见火成岩的研磨性指标测试结果分别为10.46,12.49,14.89,16.20,19.35,21.42,24.35,28.43,36.52和41.08 mg/cm3。
2. 岩样物理力学性质测试
采用XPert Powder多功能粉末X射线衍射仪测定了斜长花岗岩、花岗斑岩和石英正长岩等10种常见火成岩岩样的矿物成分及其含量,并用岩石单轴测试仪测定了这些岩样的单轴抗压强度,结果见表1(表1中:qe为岩石等效石英含量;σ为岩石单轴抗压强度,MPa)。
表 1 火成岩岩样矿物成分及含量和单轴抗压强度测试结果Table 1. Test results of mineral composition & content and uniaxial compressive strength of igneous rock samples岩性 矿物各成分含量,% qe,% σ/MPa 石英 钾长石 斜长石 闪石 辉石 斜长花岗岩 12 25 59 – – 84.00 112 花岗斑岩 17 50 29 – – 84.71 129 石英正长岩 19 51 27 – – 85.86 147 石英二长岩 18 38 41 – – 86.00 138 花岗二长岩 24 36 37 – – 86.57 176 英安岩 36 9 40 11 – 88.21 207 花岗正长岩 31 44 20 – – 85.86 230 角闪辉长岩 18 22 36 10 13 89.27 268 花岗闪长岩 35 9 54 3 – 90.13 275 玄武岩 – 17 55 5 19 – 308 表1和相关理论研究结果均证明,岩石中所含硬质矿物对其研磨性影响很大,斜长花岗岩、花岗斑岩和石英正长岩等火成岩岩样所含矿物成分差距较大,不容易比较其对研磨性的影响程度,因此采用等效石英的方法,将除石英之外的其他矿物折算为石英硬度水平,具体方法为:取石英硬度为7.0,长石硬度为6.0,闪石和辉石硬度为6.5,计算其等效石英含量,计算公式为:
qe=q+n∑i=1Ciqi (2) 式中:q为岩石的石英含量;Ci为i类矿物折算系数;qi为i类矿物含量。
斜长花岗岩、花岗斑岩和石英正长岩等10种火成岩岩样等效石英含量的计算结果见表1。
3. 火成岩研磨性预测模型的建立
3.1 单因素分析
分别以表1中斜长花岗岩、花岗斑岩和石英正长岩等10种火成岩岩样的单轴抗压强度和等效石英含量为横坐标,以测试的这10种火成岩岩样的研磨性指标为纵坐标绘制散点图,并进行回归分析,回归结果见表2和表3。
表 2 火成岩研磨性指标与单轴抗压强度关系回归结果Table 2. Regression results of relationship between compressive strength and abrasiveness of igneous rocks函数关系 模型 R2 F 线性 ω=0.144σ–6.028 0.944 3 135.504 1 对数 ω=27.244lnσ–120.17 0.901 4 70.133 6 指数 ω=5.78e0.006 4σ 0.961 4 199.476 8 幂 ω=0.031σ1.241 0.963 1 208.851 6 多项式 ω=0.000 4σ2–0.025 5σ+9.712 0.962 9 91.030 9 由表2中的回归结果可知,火成岩的研磨性指标与单轴抗压强度按照幂函数回归时拟合度最好(见图6),据此确定火成岩研磨性指标与单轴抗压强度的关系模型为:
表 3 火成岩研磨性指标与等效石英含量关系回归结果Table 3. Regression results of relationship between equivalent quartz content and abrasiveness of igneous rocks函数关系 模型 R2 F 线性 ω=3.680qe–298.74 0.830 4 34.262 3 对数 ω=320.26lnqe–1 408.7 0.828 5 33.813 3 指数 ω=4×10–6e0.187qe 0.832 7 34.845 0 幂 ω=2×10–29qe15.5 0.834 3 35.234 0 多项式 ω=0.02qe2–138.617 0.832 1 34.690 8 ω=0.031σ1.241 (3) 显著性水平α取0.05,查F(1,8)表得知临界值λ为5.32。由于
F≫λ ,说明式(3)有意义,故火成岩单轴抗压强度对其研磨性的影响显著。由表3中的回归结果可知,火成岩的研磨性指标与等效石英含量按照幂函数回归时,拟合度最好(见图7),据此火成岩研磨性指标与等效石英含量的关系模型为:
ω=2×10−29qe15.5 (4) 显著性水平α取0.05,查F(1,7)表得知临界值λ为5.59。由于F>λ,说明式(4)有意义,故火成岩等效石英含量对其研磨性的影响显著。
3.2 多因素分析
由于石油钻井中钻遇的地层复杂多样,火成岩的研磨性可能受多种因素的影响,综合考虑,采用多因素岩石力学参数建立了岩石研磨性预测模型。结合前人的研究成果[14-15],假设火成岩研磨性预测模型为:
ω=kσaqbe (5) 式中:a,b和k为系数。
结合斜长花岗岩、花岗斑岩和石英正长岩等10种火成岩岩样研磨性指标测试结果和表1中的等效石英含量和单轴抗压强度数据,回归求得a,b和k,则火成岩多因素研磨性预测模型为:
ω=0.933×10−7σ0.993q3.136e (6) 显著性水平α取0.05,查F(2,6)表可得临界值λ为5.14。由于F=77.357 9>λ,说明式(6)有意义,故火成岩等效石英含量和抗压强度对其研磨性影响显著。
3.3 预测模型的建立
以决定系数R2和统计检验值F为参考指标,对式(3)、式(4)和式(6)进行分析比较,结果见表4。由表4可知,式(3)的效果最好,因此确定式(3)为基于单轴抗压强度的火成岩研磨性预测模型。
表 4 回归关系式比较Table 4. Comparison of regression relations引入参数 关系式 R2 F σ 式(3) 0.963 1 208.851 6 qe 式(4) 0.834 3 35.234 0 qe,σ 式(6) 0.962 7 77.357 9 3.4 模型验证
为了进一步验证火成岩研磨性预测模型的准确性,收集了5种火成岩露头岩样,通过室内试验测定了其研磨性指标和单轴抗压强度,用式(3)计算出岩石研磨性指标值,并与实测研磨性指标进行对比,结果见表5。由表5可知,该预测模型的预测误差均在10%以内,精度较高,所用参数只有一个单轴抗压强度,且易于获得,有利于在现场应用。
表 5 研磨性指标预测结果Table 5. Abrasiveness prediction results of igneous rocks with different lithologies岩性 单轴抗压
强度/MPa研磨性指标/(mg∙cm–3) 相对误差,% 预测 实测 正长花岗岩 151 15.63 15.24 2.52 斜长花岗岩 118 11.51 11.95 3.80 粉红花岗岩 273 32.60 30.06 7.80 二长花岗岩 197 21.75 23.17 6.55 二长花岗岩 169 17.98 17.45 2.94 4. 结论与建议
1)以663青铜粉和人造金刚石粉制成的金刚石孕镶块为标准件,采用钻–磨法测试了火成岩的研磨性。
2)采用自制的岩石研磨性试验装置,在钻压800 N、钻头转速198 r/min、岩样转速8 r/min的试验参数下进行钻–磨试验,以破碎单位体积岩石研磨标准件的磨损质量为研磨性指标,可将不同研磨性的火成岩区分开,且分辨率较高。
3)回归分析表明,火成岩的研磨性与其单轴抗压强度和等效石英含量分别呈较好的幂函数关系,具有较强的规律性。
4)以火成岩单轴抗压强度为基础建立的研磨性预测模型的预测精度较高,工程上可用其计算火成岩的研磨性。
5)本文只是基于火成岩研磨性试验建立了火成岩研磨性预测模型,建议借鉴该方法获得其他岩性岩石的研磨性预测模型。
-
-
[1] 范白涛. 中国海油 “少井高产” 钻完井技术研究现状及展望[J]. 中国海上油气,2025,37(2):189–197. FAN Baitao. Research status and prospects of CNOOC drilling and completion technology of high production with fewer wells[J]. China Offshore Oil and Gas, 2025, 37(2): 189–197.
[2] 郭永宾,左坤,邓成辉,等. 南海东部恩平21−4油田超深大位移水平井钻完井关键技术[J]. 石油钻探技术,2025,53(2):11–20. doi: 10.11911/syztjs.2025021 GUO Yongbin, ZUO Kun, DENG Chenghui, et al. Key drilling technologies for ultra-deep extended reach horizontal well in Enping 21−4 Oilfield, Eastern South China Sea[J]. Petroleum Drilling Techniques, 2025, 53(2): 11–20. doi: 10.11911/syztjs.2025021
[3] 刘贤来,刘军,陈兆明,等. 南海超深水区靖海凹陷沉积特征及烃源岩潜力预测[J]. 世界石油工业,2023,30(4):23–29. LIU Xianlai, LIU Jun, CHEN Zhaoming, et al. Sedimentary characteristics and prediction of source rock potential of Jinghai Sag in ultra-deep water area of South China Sea[J]. World Petroleum Industry, 2023, 30(4): 23–29.
[4] 张来斌,谢仁军,殷启帅. 深水油气开采风险评估及安全控制技术进展与发展建议[J]. 石油钻探技术,2023,51(4):55–65. doi: 10.11911/syztjs.2023036 ZHANG Laibin, XIE Renjun, YIN Qishuai. Technical progress and development suggestions for risk assessment and safety control of deep-water oil and gas exploitation[J]. Petroleum Drilling Techniques, 2023, 51(4): 55–65. doi: 10.11911/syztjs.2023036
[5] 吴林强,张涛,徐晶晶,等. 全球海洋油气勘探开发特征及趋势分析[J]. 国际石油经济,2019,27(3):29–36. WU Linqiang, ZHANG Tao, XU Jingjing, et al. Characteristics and trends of global offshore oil and gas exploration and development[J]. International Petroleum Economics, 2019, 27(3): 29–36.
[6] 杨进,李磊,宋宇,等. 中国海洋油气钻井技术发展现状及展望[J]. 石油学报,2023,44(12):2308–2318. doi: 10.7623/syxb202312019 YANG Jin, LI Lei, SONG Yu, et al. Current status and prospects of offshore oil and gas drilling technology development in China[J]. Acta Petrolei Sinica, 2023, 44(12): 2308–2318. doi: 10.7623/syxb202312019
[7] 杨进,傅超,刘书杰,等. 中国深水钻井关键技术与装备现状及展望[J]. 世界石油工业,2024,31(4):69–80. YANG Jin, FU Chao, LIU Shujie, et al. Current status and prospects of key technologies and equipment for deepwater drilling in China[J]. World Petroleum Industry, 2024, 31(4): 69–80.
[8] 张海山. 中国海洋石油大位移井钻井技术现状及展望[J]. 石油钻采工艺,2023,45(1):1–11. ZHANG Haishan. Status and prospect of CNOOC’s extended reach well drilling technologies[J]. Oil Drilling & Production Technology, 2023, 45(1): 1–11.
[9] 黄熠,刘书杰,周建良,等. 陵水17−2气田深水钻完井关键技术研究与应用[J]. 中国海上油气,2021,33(5):130–135. HUANG Yi, LIU Shujie, ZHOU Jianliang, et al. Research and application of key technologies for deep water drilling and completion in LS17−2 Gas Field[J]. China Offshore Oil and Gas, 2021, 33(5): 130–135.
[10] 朱海山,李达,魏澈,等. 南海陵水17−2深水气田开发工程方案研究[J]. 中国海上油气,2018,30(4):170–177. ZHU Haishan, LI Da, WEI Che, et al. Research on LS17−2 deep water gas field development engineering scenario in South China Sea[J]. China Offshore Oil and Gas, 2018, 30(4): 170–177.
[11] 张亮,张崇,黄海东,等. 深水钻完井天然气水合物风险及预防措施:以南中国海琼东南盆地QDN−X井为例[J]. 石油勘探与开发,2014,41(6):755–762. doi: 10.11698/PED.2014.06.17 ZHANG Liang, ZHANG Chong, HUANG Haidong, et al. Gas hydrate risks and prevention for deep water drilling and completion: a case study of well QDN−X in Qiongdongnan Basin, South China Sea[J]. Petroleum Exploration and Development, 2014, 41(6): 755–762. doi: 10.11698/PED.2014.06.17
[12] 李中,谢仁军,吴怡,等. 中国海洋油气钻完井技术的进展与展望[J]. 天然气工业,2021,41(8):178–185. doi: 10.3787/j.issn.1000-0976.2021.08.016 LI Zhong, XIE Renjun, WU Yi, et al. Progress and prospect of CNOOC’s oil and gas well drilling and completion technologies[J]. Natural Gas Industry, 2021, 41(8): 178–185. doi: 10.3787/j.issn.1000-0976.2021.08.016
[13] 李绪深,张迎朝,杨希冰,等. 莺歌海−琼东南盆地天然气勘探新认识与新进展[J]. 中国海上油气,2017,29(6):1–11. LI Xushen, ZHANG Yingzhao, YANG Xibing, et al. New understandings and achievements of natural gas exploration in Yinggehai−Qiongdongnan Basin, South China Sea[J]. China Offshore Oil and Gas, 2017, 29(6): 1–11.
[14] 王友华,王文海,蒋兴迅. 南海深水钻井作业面临的挑战和对策[J]. 石油钻探技术,2011,39(2):50–55. doi: 10.3969/j.issn.1001-0890.2011.02.009 WANG Youhua, WANG Wenhai, JIANG Xingxun. South China Sea deepwater drilling challenges and solutions[J]. Petroleum Drilling Techniques, 2011, 39(2): 50–55. doi: 10.3969/j.issn.1001-0890.2011.02.009
[15] 孟文波,李蔚萍,颜帮川,等. 深水钻完井络合水弃置液性能及在陵水17−2气田的应用研究[J]. 化工新型材料,2015,43(12):233–235. MENG Wenbo, LI Weiping, YAN Bangchuan, et al. Research and field application of complex water defeated agent on LS 17−2 Gas Field in deepwater area of Northern South China Sea[J]. New Chemical Materials, 2015, 43(12): 233–235.
[16] 赵苏文. 琼东南盆地深水钻井关键技术及其实践效果[J]. 探矿工程(岩土钻掘工程),2016,43(11):26–31. ZHAO Suwen. Key technology and the practical effects of deepwater drilling in southeast Hainan Basin[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2016, 43(11): 26–31.
[17] 苟梦姣,陈景杨,翁羽. 大位移井钻井现状及发展趋势[J]. 工程机械,2024,55(4):164–167. doi: 10.3969/j.issn.1000-1212.2024.04.030 GOU Mengjiao, CHEN Jingyang, WENG Yu. Current situation and development trend of drilling of extended reach well[J]. Construction Machinery and Equipment, 2024, 55(4): 164–167. doi: 10.3969/j.issn.1000-1212.2024.04.030
[18] 朱玉磊,耿立军,陈卓. 大位移井钻井关键技术探析[J]. 中国石油和化工标准与质量,2023,43(18):184–186. doi: 10.3969/j.issn.1673-4076.2023.18.061 ZHU Yulei, GENG Lijun, CHEN Zhuo. Analysis of key technologies for extended-reach drilling[J]. China Petroleum and Chemical Standard and Quality, 2023, 43(18): 184–186. doi: 10.3969/j.issn.1673-4076.2023.18.061
[19] 石祥超,陈帅. 岩石可钻性分级标准的改进建议[J]. 石油学报,2024,45(9):1432–1442. SHI Xiangchao, CHEN Shuai. Suggestions for improving the grading standards of rock drillability[J]. Acta Petrolei Sinica, 2024, 45(9): 1432–1442.
[20] 盛磊祥,王荣耀,许亮斌,等. 台风应急期间深水钻井隔水管悬挂撤离安全分析[J]. 石油钻探技术,2015,43(4):25–29. SHENG Leixiang, WANG Rongyao, XU Liangbin, et al. Safety analysis of the hang-off of deepwater drilling risers during a typhoon emergency period[J]. Petroleum Drilling Techniques, 2015, 43(4): 25–29.
[21] 黄飞宇,莫康荣,张帅杰,等. 精细控压钻井技术在南海高温高压井的应用[J]. 石化技术,2024,31(9):177–178. doi: 10.3969/j.issn.1006-0235.2024.09.061 HUANG Feiyu, MO Kangrong, ZHANG Shuaijie, et al. Application of fine pressure control drilling technology in high temperature and high pressure wells in the South China Sea[J]. Petrochemical Industry Technology, 2024, 31(9): 177–178. doi: 10.3969/j.issn.1006-0235.2024.09.061
[22] 谢仁军,刘书杰,文敏,等. 深水钻井溢流井控期间水合物生成主控因素[J]. 石油钻采工艺,2015,37(1):64–67. XIE Renjun, LIU Shujie, WEN Min, et al. Main control factor of hydrate generation during overflow well control period of deepwater drilling[J]. Oil Drilling & Production Technology, 2015, 37(1): 64–67.
[23] 刘书杰,徐一龙,张宇飞,等. 水合物抑制剂的合成及在超深水钻井液中的应用[J]. 钻井液与完井液,2024,41(5):557–563. doi: 10.12358/j.issn.1001-5620.2024.05.002 LIU Shujie, XU Yilong, ZHANG Yufei, et al. Synthesis of a hydrate inhibitor and its application in drilling fluids for ultra-deep water drilling[J]. Drilling Fluid & Completion Fluid, 2024, 41(5): 557–563. doi: 10.12358/j.issn.1001-5620.2024.05.002
[24] 刘和兴,柳亚亚,马传华,等. 深水水平井气侵井控临界压井排量研究[J]. 中国海上油气,2023,35(2):138–145. LIU Hexing, LIU Yaya, MA Chuanhua, et al. Study on critical killing displacement of gas kick in deepwater horizontal wells[J]. China Offshore Oil and Gas, 2023, 35(2): 138–145.
[25] 王金铎,王宴滨,贺子磬,等. 气侵条件下深水钻井井筒温压耦合场分布规律研究[J]. 石油钻探技术,2024,52(6):50–61. WANG Jinduo, WANG Yanbin, HE Ziqing, et al. Temperature and pressure coupling field distribution law in deepwater drilling wellbore undergas kick[J]. Petroleum Drilling Techniques, 2024, 52(6): 50–61.
[26] 黄熠,吴艳辉,田野,等. 压井期间水平井扩径段气体运移规律研究[J]. 中国海上油气,2023,35(2):122–128. HUANG Yi, WU Yanhui, TIAN Ye, et al. Law of gas migration in the enlarged section of horizontal wells during well killing[J]. China Offshore Oil and Gas, 2023, 35(2): 122–128.
[27] 张煜伟,刘坤翔. 南海西部海上高温高压钻完井技术研究[J]. 石化技术,2025,32(3):159–161. ZHANG Yuwei, LIU Kunxiang. Research on offshore high-temperature high-pressure drilling and completion technology in the Western South China Sea[J]. Petrochemical Industry Technology, 2025, 32(3): 159–161.
[28] 罗鸣,吴江,陈浩东,等. 南海西部窄安全密度窗口超高温高压钻井技术[J]. 石油钻探技术,2019,47(1):8–12. doi: 10.11911/syztjs.2019024 LUO Ming, WU Jiang, CHEN Haodong, et al. Ultra-high temperature high pressure drilling technology for narrow safety density window strata in the Western South China[J]. Petroleum Drilling Techniques, 2019, 47(1): 8–12. doi: 10.11911/syztjs.2019024
[29] 邓福成,徐志会,谭章龙,等. 深水气田疏松砂岩储层出砂机理研究[J]. 石油机械,2023,51(4):80–89. DENG Fucheng, XU Zhihui, TAN Zhanglong, et al. Sand production mechanism of loose sandstone reservoir in deepwater gas field[J]. China Petroleum Machinery, 2023, 51(4): 80–89.
[30] 张辉,谭绍栩,霍通达,等. 渤海特高孔渗储层控水防砂一体化完井技术[J]. 石油钻探技术,2024,52(1):107–113. doi: 10.11911/syztjs.2024015 ZHANG Hui, TAN Shaoxu, HUO Tongda, et al. Integrated completion technology of water and sand control in reservoirs with extra-high porosity and permeability in Bohai Oilfield[J]. Petroleum Drilling Techniques, 2024, 52(1): 107–113. doi: 10.11911/syztjs.2024015
[31] 高国青,叶湘滨,乔纯捷,等. 水下声定位系统原理与误差分析[J]. 兵器装备工程学报,2010,31(6):95–97. doi: 10.3969/j.issn.1006-0707.2010.06.030 GAO Guoqing, YE Xiangbin, QIAO Chunjie, et al. Principles and error analysis of underwater acoustic positioning systems[J]. Journal of Ordnance Equipment Engineering, 2010, 31(6): 95–97. doi: 10.3969/j.issn.1006-0707.2010.06.030
[32] 孙大军,郑翠娥,钱洪宝,等. 水声定位系统在海洋工程中的应用[J]. 声学技术,2012,31(2):125–132. doi: 10.3969/j.issn1000-3630.2012.02.003 SUN Dajun, ZHENG Cuie, QIAN Hongbao, et al. The application of underwater acoustic positioning systems in ocean engineering[J]. Technical Acoustics, 2012, 31(2): 125–132. doi: 10.3969/j.issn1000-3630.2012.02.003
[33] 施程振. 深水控压钻井井涌信息传播机理与反馈控制方法研究[D]. 青岛:中国石油大学(华东),2023. SHI Chengzhen. Research on the propagation mechanism and feedback control methods of kick information in deepwater managed pressure drilling[D]. Qingdao: China University of Petroleum(East China), 2023.
[34] 杨进,张明贺,张伟国,等. 深水浅层钻井 “三合一” 高效作业模式[J]. 石油学报,2025,46(3):599–608. doi: 10.7623/syxb202503009 YANG Jin, ZHANG Minghe, ZHANG Weiguo, et al. “Three-in-one” efficient drilling operation mode in deepwater shallow formations[J]. Acta Petrolei Sinica, 2025, 46(3): 599–608. doi: 10.7623/syxb202503009
[35] 杨进,李文龙,胡志强,等. 深水钻井水下井口稳定性研究进展[J]. 中国海上油气,2020,32(4):124–130. YANG Jin, LI Wenlong, HU Zhiqiang, et al. Research progresses on subsea wellhead stability of deep water drilling[J]. China Offshore Oil and Gas, 2020, 32(4): 124–130.
[36] 王金龙,许亮斌. 深水水下井口系统疲劳监测损伤评估研究进展[J]. 石油机械,2023,51(1):53–60. WANG Jinlong, XU Liangbin. Research progress of fatigue monitoring and damage assessment of deepwater subsea wellhead[J]. China Petroleum Machinery, 2023, 51(1): 53–60.
[37] 李舜水,唐鹏磊,吴健. 东海大位移井完井技术研究与应用[J]. 海洋工程装备与技术,2020,7(1):48–53. LI Shunshui, TANG Penglei, WU Jian. Research and application of completion technologies for the East China Sea extended reach well[J]. Ocean Engineering Equipment and Technology, 2020, 7(1): 48–53.
[38] 姜伟. 深水钻井喷射下导管过程中钻柱扭振规律研究及其应用[J]. 海洋工程装备与技术,2019,6(1):450–456. JIANG Wei. Research and application of drill string torsional vibration in deepwater drilling while jetting the conductor[J]. Ocean Engineering Equipment and Technology, 2019, 6(1): 450–456.
[39] 李彬,王彪,刘保波. 南海荔湾超深水表层导管喷射设计与实践[J]. 石化技术,2021,28(7):91–92. LI Bin, WANG Biao, LIU Baobo. Design and practice of ultra-deepwater surface conductor jetting in Liwan, South China Sea[J]. Petrochemical Industry Technology, 2021, 28(7): 91–92.
[40] 蒋凯,李舒展,张亢,等. 赤几深水钻井导管高效下入技术[J]. 石油钻采工艺,2018,40(增刊1):104–108. JIANG Kai, LI Shuzhan, ZHANG Kang, et al. High efficiency downloading technology for deepwater drilling conductor in the Equatorial Guinea[J]. Oil Drilling & Production Technology, 2018, 40(supplement 1): 104–108.
[41] 周仁斌,张帅. 一趟式套管切割回收技术在海洋半潜式平台中的应用[J]. 石化技术,2022,29(2):102–104. ZHOU Renbin, ZHANG Shuai. Application of casing cutting and recovery technology in offshore semi submersible platform[J]. Petrochemical Industry Technology, 2022, 29(2): 102–104.
[42] 张书炜,高永海,尹法领,等. 深水天然气水合物降压开采增产稳产影响因素分析[J]. 石油化工,2025,54(3):444–450. ZHANG Shuwei, GAO Yonghai, YIN Faling, et al. Factors influencing production enhancement and stabilization in deepwater natural gas hydrate depressurization exploitation[J]. Petrochemical Technology, 2025, 54(3): 444–450.
[43] 王志远,张剑波,孟文波,等. 深水气井天然气水合物生成、沉积特性与防治方法[J]. 石油学报,2021,42(6):776–790. WANG Zhiyuan, ZHANG Jianbo, MENG Wenbo, et al. Formation, deposition characteristics and prevention methods of gas hydrates in deepwater gas wells[J]. Acta Petrolei Sinica, 2021, 42(6): 776–790.
[44] 徐立涛,何玉林,石万忠,等. 琼东南盆地深水区天然气水合物成藏主控因素及模式[J]. 石油学报,2021,42(5):598–610. XU Litao, HE Yulin, SHI Wanzhong, et al. Main controlling factors and patterns of gas hydrate accumulation in the deep water area of Qiongdongnan Basin[J]. Acta Petrolei Sinica, 2021, 42(5): 598–610.
[45] 马通,祝鹏,陈鸣,等. 琼东南盆地天然气水合物储层参数测井评价及分析[J]. 断块油气田,2023,30(2):254–260. MA Tong, ZHU Peng, CHEN Ming, et al. Logging evaluation and analysis of reservoir parameter for natural gas hydrate in Qiongdongnan Basin[J]. Fault-Block Oil & Gas Field, 2023, 30(2): 254–260.
[46] 王凯,苑世宁,张超. 海底气液多相流混输管道电伴热的热能节省特性研究[J]. 中国海上油气,2024,36(4):221–229. WANG Kai, YUAN Shining, ZHANG Chao. Heat energy-saving characteristics of electric heat tracing in subsea gas-liquid multiphase-flow mixed transportation pipelines[J]. China Offshore Oil and Gas, 2024, 36(4): 221–229.
[47] 姚海元,陈海宏,伍壮,等. 深水油气田流动安全保障技术研究进展[J]. 海洋工程装备与技术,2022,9(3):73–78. YAO Haiyuan, CHEN Haihong, WU Zhuang, et al. Research progress of flow assurance for deepwater oil and gas fields[J]. Ocean Engineering Equipment and Technology, 2022, 9(3): 73–78.
-
期刊类型引用(18)
1. 姜振学,梁志凯,申颍浩,唐相路,吴伟,李卓,薛子鑫,石学文,郭婕. 川南泸州地区页岩气甜点地质工程一体化关键要素耦合关系及攻关方向. 地球科学. 2023(01): 110-129 . 百度学术
2. 冯昕媛,李春雨,刘永,张煜,谢贵琪. 柴达木盆地高温深部储层压裂改造技术. 石油工业技术监督. 2022(04): 63-67 . 百度学术
3. 孙友宏,沈奕锋,张国彪,李冰,黄峰,齐赟,单恒丰,金芳. 海底水合物储层双增改造浆液及其固结体性能. 中国石油大学学报(自然科学版). 2022(06): 1-10 . 百度学术
4. 路保平. 中国石化石油工程技术新进展与发展建议. 石油钻探技术. 2021(01): 1-10 . 本站查看
5. 王海涛,仲冠宇,卫然,左罗. 降低深层页岩气井压裂施工压力技术探讨. 断块油气田. 2021(02): 162-167 . 百度学术
6. 胡春锋,梅俊伟,李仕钊,卢比,马军,钱劲. 四川盆地东部南川常压页岩气开发效果地质与工程因素分析. 油气藏评价与开发. 2021(04): 559-568 . 百度学术
7. 张健强,李平,陈朝刚,陆朝晖,张海涛,袁勇. 深层页岩气水平井体积压裂改造实践. 内江科技. 2020(06): 18-20 . 百度学术
8. 陈作,李双明,陈赞,王海涛. 深层页岩气水力裂缝起裂与扩展试验及压裂优化设计. 石油钻探技术. 2020(03): 70-76 . 本站查看
9. 曾波,王星皓,黄浩勇,张柟乔,岳文翰,邓琪. 川南深层页岩气水平井体积压裂关键技术. 石油钻探技术. 2020(05): 77-84 . 本站查看
10. 蒋成白,胡毅,豆瑞杰. 深层页岩气井压裂工艺探索与实践. 江汉石油科技. 2019(01): 42-50 . 百度学术
11. 李宪文,赵振峰,李喆,王文东,丛海龙. 随机分形压裂水平井缝网参数反演方法. 断块油气田. 2019(02): 205-209 . 百度学术
12. 林波,秦世群,谢勃勃,吴娜娜. 涪陵深层页岩气井压裂工艺难点及对策研究. 石化技术. 2019(05): 162+168 . 百度学术
13. 郭昊,魏旭,张永平,王海涛,邓大伟,朱兴旺. 考虑非均质性的致密储层改造效果评价. 油气地质与采收率. 2019(03): 111-116 . 百度学术
14. 曲占庆,王涛,郭天魁,李小龙,林强,王晓之. 平面多径向井水射流辅助压裂构造多缝机理. 断块油气田. 2019(03): 404-408 . 百度学术
15. 曾义金,周俊,王海涛,左罗,蒋廷学,仲冠宇,郭印同,常鑫,王磊,杨春和. 深层页岩真三轴变排量水力压裂物理模拟研究. 岩石力学与工程学报. 2019(09): 1758-1766 . 百度学术
16. 卞晓冰,侯磊,蒋廷学,高东伟,张驰. 深层页岩裂缝形态影响因素. 岩性油气藏. 2019(06): 161-168 . 百度学术
17. 沈骋,郭兴午,陈马林,雍锐,范宇. 深层页岩气水平井储层压裂改造技术. 天然气工业. 2019(10): 68-75 . 百度学术
18. 梁潇,喻高明,黄永章,周志峰. 大牛地气田分段多簇缝网压裂技术. 断块油气田. 2019(05): 617-621 . 百度学术
其他类型引用(9)