深水天然气水合物原位保压保温取样技术

付成行, 赵乐, 陈领, 徐萌, 吴晗, 秦铂涛, 谢和平

付成行,赵乐,陈领,等. 深水天然气水合物原位保压保温取样技术[J]. 石油钻探技术,2025,53(3):146−155. DOI: 10.11911/syztjs.2025063
引用本文: 付成行,赵乐,陈领,等. 深水天然气水合物原位保压保温取样技术[J]. 石油钻探技术,2025,53(3):146−155. DOI: 10.11911/syztjs.2025063
FU Chenghang, ZHAO Le, CHEN Ling, et al. In-situ thermal insulation and pressure preservation sampling technologies for deepwater natural gas hydrate [J]. Petroleum Drilling Techniques, 2025, 53(3):146−155. DOI: 10.11911/syztjs.2025063
Citation: FU Chenghang, ZHAO Le, CHEN Ling, et al. In-situ thermal insulation and pressure preservation sampling technologies for deepwater natural gas hydrate [J]. Petroleum Drilling Techniques, 2025, 53(3):146−155. DOI: 10.11911/syztjs.2025063

深水天然气水合物原位保压保温取样技术

基金项目: 

国家自然科学基金青年学生基础研究项目(博士研究生)“深海天然气水合物原位相变保温取心机理及效能研究”(编号:523B2101)与深圳市技术攻关重点项目“基于深水钻井平台的天然气水合物取样、转移与测试系统研发”(编号:JSGG20220831105002005)联合资助。

详细信息
    作者简介:

    付成行(1997—),男,重庆市人,2020年毕业于中国矿业大学采矿工程专业,四川大学土木工程专业在读博士研究生,主要从事深海原位保真取心探矿研究工作。E-mail:fuchenghangscu@163.com

    通讯作者:

    谢和平,中国工程院院士,xiehp@szu.edu.cn

  • 中图分类号: P744.4;TE244

In-Situ Thermal Insulation and Pressure Preservation Sampling Technologies for Deepwater Natural Gas Hydrate

  • 摘要:

    针对深水天然气水合物取样原位温度、压力维持困难的问题,依据牟合方盖几何原理,选用耐高压、耐低温、耐海水腐蚀且寿命长、抗疲劳的材料,研制出海洋深水原位自触发保压控制器,实现深水天然气水合物取样过程中样品压力稳定。基于传热学基本原理,研发了多种主动和被动保温技术,利用自主研发的控温系统,耦合半导体制冷、相变潜热储能和空心微珠复合材料3种保温方案,形成了一种新型复合保温技术,满足了深水天然气水合物取样过程中的样品保温需求。基于保温保压取样关键工具和技术研究成果,研制了贯入式深水天然气水合物原位保温保压取样器,并利用载人深潜器完成2次海试作业,均成功获取了保持原位温度、压力的深水沉积物(天然气水合物)样品。研究结果为深水天然气水合物的安全、高效开发提供了关键技术支撑,也将有力推动深水原位保压保温领域的科研工作与工程实践。

    Abstract:

    In view of the difficulty in maintaining in-situ temperature and pressure during sampling of deepwater natural gas hydrates, based on the geometric principle of the Steinmetz solid, materials resistant to high pressure, low temperature, seawater corrosion, and fatigue and with a long service life were selected. An in-situ self-triggering pressure preservation controller for marine deep water was developed to achieve stable sample pressure during the sampling process of deepwater hydrates. Based on the fundamental principles of heat transfer, a variety of active and passive thermal insulation technologies were developed. By using a self-developed temperature control system and coupling three thermal insulation schemes, namely semiconductor refrigeration, phase change-based latent heat energy storage, and hollow microsphere composite materials, a new type of composite thermal insulation technology was formed, which met the thermal insulation requirements of samples during the sampling process of deepwater hydrates. Based on the research results of key tools and technologies for thermal insulation and pressure preservation sampling, a penetrating in-situ thermal insulation and pressure preservation sampler for deepwater natural gas hydrates was developed. Two sea trial operations were completed using manned deep-sea submersibles, and samples of deepwater sediments (natural gas hydrates) maintaining in-situ temperature and pressure were successfully obtained in both cases. The research result provides key technical support for the safe and efficient development of deepwater natural gas hydrates. It will also strongly promote scientific research and engineering practice in the field of in-situ thermal insulation and pressure preservation in deep water.

  • 图  1   海洋深水原位自触发保压控制器基本结构

    Figure  1.   Basic structure of in-situ self-triggering pressure preservation controller for marine deep water

    图  2   磁力式保压控制器保压能力测试结果

    Figure  2.   Pressure preservation capacity test results of magnetic pressure preservation controller

    图  3   室内保温方案效能测试平台

    Figure  3.   Laboratory thermal insulation scheme efficiency test platform

    图  4   5种保温方案保温效果对比

    Figure  4.   Comparison of thermal insulation effects of 5 thermal insulation schemes

    图  5   复合保温技术基本原理

    Figure  5.   Basic principle of composite thermal insulation technology

    图  6   复合保温技术室内模拟试验结果

    Figure  6.   Laboratory simulation test results of composite thermal insulation technology

    图  7   贯入式深水原位保压保温取样器基本结构

    Figure  7.   Basic structure of penetrating in-situ thermal insulation and pressure preservation sampler for deep water

    图  8   海洋深水天然气水合物保压保温取样/存储器海试

    Figure  8.   Sea trials of thermal insulation and pressure preservation sampler /storage device of marine deepwater hydrate

    图  9   沉积物样品表面SEM扫面电镜结果

    Figure  9.   SEM results of sediment surface

    图  10   南海海马冷泉深水海底沉积物样品的EDS能谱分析结果

    Figure  10.   EDS analysis results of deepwater seabed sediment samples from the Haima Cold Seep in the South China Sea

    表  1   南海海马冷泉深水海底沉积物样品的元素分布结果

    Table  1   Elemental distribution results of deepwater seabed sediment samples from the Haima Cold Seep in the South China Sea

    元素质量分数,%体积分数,%
    O31.2239.92
    C14.1224.05
    Si13.059.50
    Cl13.027.51
    Na8.697.72
    Ca8.594.39
    Al5.093.86
    Fe3.151.16
    K1.410.74
    Mg1.110.92
    Mn0.280.11
    Ti0.270.12
    总量100.00100.00
    下载: 导出CSV

    表  2   南海海马冷泉沉积物样品的离子含量分析

    Table  2   Ion concentration of sediment samples from the Haima Cold Seep in the South China Sea

    样品编号 阳离子质量浓度/(mg·L−1 阴离子质量比/(mg·kg−1
    Al3+ Ca2+ Mg2+ Na+ Cs+ F Cl Br NO3 SO42−
    491 <10 308 1280 10300 0.174 0.9412 17198.1246 58.3509 10.6888 1609.9664
    493 <10 110 337 3250 0.106 0.8019 4616.2957 15.172 2 12.9814 619.674 0
    494 <10 470 1440 11500 0.182 0.7287 16820.6774 54.7159 9.5484 2426.710 2
    下载: 导出CSV
  • [1]

    LIU Liping, SUN Zhilei, ZHANG Lei, et al. Progress in global gas hydrate development and production as a new energy resource[J]. Acta Geologica Sinica (English Edition), 2019, 93(3): 731–755. doi: 10.1111/1755-6724.13876

    [2] 金庆焕. 天然气水合物:未来的新能源[J]. 中国工程科学,2000,2(11):29–34. doi: 10.3969/j.issn.1009-1742.2000.11.005

    JIN Qinghuan. Gas hydrate: a new future energy[J]. Strategic Study of CAE, 2000, 2(11): 29–34. doi: 10.3969/j.issn.1009-1742.2000.11.005

    [3] 姚伯初. 南海的天然气水合物矿藏[J]. 热带海洋学报,2001,20(2):20–28. doi: 10.3969/j.issn.1009-5470.2001.02.004

    YAO Bochu. The gas hydrate in the South China Sea[J]. Journal of Tropical Oceanography, 2001, 20(2): 20–28. doi: 10.3969/j.issn.1009-5470.2001.02.004

    [4] 李常茂,耿瑞伦. 关于天然气水合物钻探的思考[J]. 探矿工程(岩土钻掘工程),2000(3):5–8.

    LI Changmao, GENG Ruilun. Pondering over gas hydrates exploration drilling[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2000(3): 5–8.

    [5] 周守为,李清平,朱军龙,等. 中国南海天然气水合物开发面临的挑战与思考[J]. 天然气工业,2023,43(11):152–163. doi: 10.3787/j.issn.1000-0976.2023.11.015

    ZHOU Shouwei, LI Qingping, ZHU Junlong, et al. Challenges and considerations for the development of natural gas hydrates in South China Sea[J]. Natural Gas Industry, 2023, 43(11): 152–163. doi: 10.3787/j.issn.1000-0976.2023.11.015

    [6] 蒋国盛,王荣璟,黎忠文,等. 天然气水合物的钻进过程控制和取样技术[J]. 探矿工程(岩土钻掘工程),2001(3):33–35.

    JIANG Guosheng, WANG Rongjing, LI Zhongwen, et al. Drilling procedure control and sampling of gas hydrates[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2001(3): 33–35.

    [7]

    KVENVOLDEN K A, BARNARD L A, CAMERON D H. Pressure core barrel: application to the study of gas hydrates, Deep Sea Drilling Project Site 533, Leg 76[R]. Washington, DC: U. S. Govt. Printing Office, 1983: 367-375.

    [8]

    DICKENS G R, WALLACE P J, PAULL C K, et al. Detection of methane gas hydrate in the pressure core sampler (PCS): volume-pressure-time relations during controlled degassing experiments[J]. Proceedings of the Ocean Drilling Program: Scientific Results, 2000, 164: 113–126.

    [9]

    MILKOV A V, DICKENS G R, CLAYPOOL G E, et al. Co-existence of gas hydrate, free gas, and brine within the regional gas hydrate stability zone at hydrate ridge (oregon margin): evidence from prolonged degassing of a pressurized core[J]. Earth and Planetary Science Letters, 2004, 222(3/4): 829–843.

    [10]

    AMANN H, HOHNBERG H-J, REINELT R. HYACE: a novel autoclave coring equipment for systematic offshore gashydrate sampling[C]// Conference on Gas Hydrates-Noxious Substances or Resources, Tagung: Gashydrate-Problemstoff/Resource, Clausthal-Zellerfeld (Germany), 6-7 Nov. 1997. Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle e. V, 1997: 37-49.

    [11]

    SCHULTHEISS P, HOLLAND M, HUMPHREY G. Wireline coring and analysis under pressure: recent use and future developments of the HYACINTH system[J]. Scientific Drilling, 2009, 7: 44–50. doi: 10.5194/sd-7-44-2009

    [12]

    MASAYUKI K, SATORU U, MASATO Y. Pressure temperature core sampler (PTCS)[J]. Journal of the Japanese Association for Petroleum Technology, 2006, 71(1): 139–147. doi: 10.3720/japt.71.139

    [13]

    BOHRMANN G, KUHS W F, KLAPP S A, et al. Appearance and preservation of natural gas hydrate from hydrate ridge sampled during ODP Leg 204 drilling[J]. Marine Geology, 2007, 244(1/2/3/4): 1–14.

    [14]

    HEESCHEN K U, HAECKEL M, HOHNBERG H-J, et al. Pressure coring at gas hydrate-bearing sites in the eastern Black Sea off Georgia[J]. Geophysical Research Abstracts, 2007, 9: 03078.

    [15]

    HOHNBERG H-J, AMANN H, ABEGG F, et al. Pressurized coring of near-surface gas-hydrate sediments on hydrate ridge: the multiple autoclave corer, and first results from pressure-core X-ray CT scans[EB/OL]. [2025-02-24]. https://ui.adsabs.harvard.edu/abs/2003EAEJA...9128H/abstract.

    [16] 李世伦,程毅,秦华伟,等. 重力活塞式天然气水合物保真取样器的研制[J]. 浙江大学学报(工学版),2006,40(5):888–892. doi: 10.3785/j.issn.1008-973X.2006.05.033

    LI Shilun, CHENG Yi, QIN Huawei, et al. Development of pressure piston corer for exploring natural gas hydrates[J]. Journal of Zhejiang University (Engineering Science), 2006, 40(5): 888–892. doi: 10.3785/j.issn.1008-973X.2006.05.033

    [17] 任红,许俊良,朱杰然. 天然气水合物非干扰绳索式保温保压取样钻具的研究[J]. 探矿工程(岩土钻掘工程),2012,39(6):1–4.

    REN Hong, XU Junliang, ZHU Jieran. Development of non-interference wire-line pressure-temperature-preserving sampling drilling tool for gas hydrate[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2012, 39(6): 1–4.

    [18] 裴学良,任红,吴仲华,等. 天然气水合物岩心带压转移装置研制与现场试验[J]. 石油钻探技术,2018,46(3):49–52.

    PEI Xueliang, REN Hong, WU Zhonghua, et al. Research and field test of a pressure-stabilizing transfer device for natural gas hydrate samples[J]. Petroleum Drilling Techniques, 2018, 46(3): 49–52.

    [19] 任红,裴学良,吴仲华,等. 天然气水合物保温保压取心工具研制及现场试验[J]. 石油钻探技术,2018,46(3):44–48.

    REN Hong, PEI Xueliang, WU Zhonghua, et al. Development and field tests of pressure-temperature preservation coring tools for gas hydrate[J]. Petroleum Drilling Techniques, 2018, 46(3): 44–48.

    [20] 郭威,孙友宏,陈晨,等. FPCS型天然气水合物孔底冷冻保压取样器的设计[J]. 机械设计与制造,2011(1):24–26. doi: 10.3969/j.issn.1001-3997.2011.01.010

    GUO Wei, SUN Youhong, CHEN Chen, et al. The design of the FPCS sample for gas hydrates by hole bottom freezing and pressure-tight[J]. Machinery Design & Manufacture, 2011(1): 24–26. doi: 10.3969/j.issn.1001-3997.2011.01.010

    [21]

    SUN Shicai, GU Linlin, YANG Zhendong, et al. Thermophysical properties of natural gas hydrates: a review[J]. Natural Gas Industry B, 2022, 9(3): 246–263. doi: 10.1016/j.ngib.2022.04.003

    [22]

    ABEGG F, HOHNBERG H-J, Pape T, et al. Development and application of pressure-core-sampling systems for the investigation of gas-and gas-hydrate-bearing sediments[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2008, 55(11): 1590–1599. doi: 10.1016/j.dsr.2008.06.006

    [23]

    LI Cong, XIE Heping, GAO Mingzhong, et al. Novel designs of pressure controllers to enhance the upper pressure limit for gas-hydrate-bearing sediment sampling[J]. Energy, 2021, 227: 120405. doi: 10.1016/j.energy.2021.120405

    [24]

    INADA N, YAMAMOTO K. Data report: hybrid pressure coring system tool review and summary of recovery result from gas-hydrate related coring in the Nankai Project[J]. Marine and Petroleum Geology, 2015, 66(part 2): 323-345.

    [25]

    LUO Yongjiang, PENG Jianming, SUN Mingze, et al. An ice-valve-based pressure-coring system for sampling natural hydrate-bearing sediments: proof-of-concept laboratory studies[J]. Journal of Natural Gas Science and Engineering, 2015, 27(part 3): 1462-1469.

    [26]

    WU Dongyu, PENG Jianming, SUN Mingze, et al. Experimental study on a pressure-coring technology based on a freeze-core valve for marine hydrate-bearing sediment sampling[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 135–142. doi: 10.1016/j.jngse.2016.05.023

    [27]

    HU Yu, LUO Min, LIANG Qianyong, et al. Pore fluid compositions and inferred fluid flow patterns at the Haima cold seeps of the South China Sea[J]. Marine and Petroleum Geology, 2019, 103: 29–40. doi: 10.1016/j.marpetgeo.2019.01.007

    [28]

    LIU Weining, WU Zijun, XU Sinan, et al. Pore-water dissolved inorganic carbon sources and cycling in the shallow sediments of the Haima cold seeps, South China Sea[J]. Journal of Asian Earth Sciences, 2020, 201: 104495. doi: 10.1016/j.jseaes.2020.104495

    [29]

    HESSE R. Pore water anomalies of submarine gas-hydrate zones as tool to assess hydrate abundance and distribution in the subsurface[J]. Earth-Science Reviews, 2003, 61(1/2): 149–179.

    [30]

    MALINVERNO A, KASTNER M, TORRES M E, et al. Gas hydrate occurrence from pore water chlorinity and downhole logs in a transect across the northern Cascadia margin (Integrated Ocean Drilling Program Expedition 311)[J]. Journal of Geophysical Research Solid Earth, 2008, 113(B8).

  • 期刊类型引用(9)

    1. 王彬,李琼玉,吕喜林,梁池,程晓伟,杨永朋. 无水改性乙二醇基速溶压裂液研制及应用. 油气井测试. 2024(05): 34-41 . 百度学术
    2. 凃宏俊,周明,李彤彤. 自修复水凝胶的研究进展及油气田应用. 西南石油大学学报(自然科学版). 2023(01): 71-80 . 百度学术
    3. 李源流,高兴军,侯浩,王延,弓虎军. 低碳烃无水压裂液体系构建及性能评价. 钻采工艺. 2023(01): 126-131 . 百度学术
    4. 匡立新. 新型铝离子无水压裂液的制备及其性能. 石油地质与工程. 2022(01): 81-86 . 百度学术
    5. 魏志毅,张金泽,公证,刘崧达,刘佳音,李家豪,范海明. 双烷基脲稠化烃基压裂液的制备及其流变特性. 中国石油大学学报(自然科学版). 2022(04): 123-129 . 百度学术
    6. 蒋廷学,左罗,黄静. 少水压裂技术及展望. 石油钻探技术. 2020(05): 1-8 . 本站查看
    7. 王满学,何静,王永炜. 国内烃基无水压裂液技术研究与应用进展. 钻井液与完井液. 2018(06): 1-7 . 百度学术
    8. 刘晨,王凯,耿艳宏,王泰超,周文胜,邱凌. 清洁压裂液破胶液驱油体系实验研究. 断块油气田. 2017(01): 96-100 . 百度学术
    9. 王满学,何静,王永炜. 耐高温低碳烃无水压裂液室内研究. 石油钻探技术. 2017(04): 93-96 . 本站查看

    其他类型引用(2)

图(10)  /  表(2)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  4
  • PDF下载量:  6
  • 被引次数: 11
出版历程
  • 收稿日期:  2025-03-23
  • 修回日期:  2025-04-16
  • 录用日期:  2025-05-19
  • 网络出版日期:  2025-05-25
  • 刊出日期:  2025-06-27

目录

    /

    返回文章
    返回