Research on segmented control equations and mechanical properties of marine exploration well conductor
-
摘要:
为解决海洋探井隔水导管力学特性分析将导管泥线以下部分简化为固定约束导致的误差问题,采用达朗贝尔原理和微元平衡方程,结合Morison方程和API规范,将隔水导管分为空气段、水中段和海底土嵌入段,综合考虑风浪流载荷及管土相互作用,构建了更精确的理论力学模型。通过线性化处理和傅里叶级数展开实现非线性项的等效转换,最终将理论力学模型的偏微分方程组转化为一阶常微分方程组进行迭代求解。模型验证表明,其计算结果与有限元仿真高度吻合,最大侧向位移误差仅为0.84 m(波高13.8 m时),证实了模型的可靠性。案例分析发现,隔水导管的力学响应呈现明显空间特征:最大侧向位移出现在水下30 m处,最大转角位于空气段顶端,而最大Von Mises应力集中于泥线以下土体段(约260 MPa)。参数敏感性分析揭示:波高每增加7 m(从13.8 m增至20.7 m),导管侧向位移增幅达146%;流速从1.58 m/s升至2.32 m/s时,应力水平上升23%;导管壁厚增加6 mm可使应力降低15%;顶张力提升200 kN可使侧向位移减少28%;砂土内摩擦角变化对导管力学响应的影响较弱(内摩擦角减小10°仅使侧向位移增加5%)。研究表明,通过迭代计算确定土体影响深度的方法,替代传统的6倍管径固定约束假设,将理论力学模型精度提高约18%。
Abstract:In studies on the mechanical response of conductors in offshore exploration wells, existing research typically focuses only on the portion above the mudline and simplifies the analysis by assuming a fixed constraint at the mudline or at a depth of six pipe diameters below it. Although this approach reduces computational complexity, it introduces significant errors. To address this issue, a segmented theoretical model of the conductor that accounts for soil-structure interaction is established based on the equilibrium of infinitesimal elements and D'Alembert's principle, in combination with the Morison equation and API guidelines. An iterative solution method is applied to accurately calculate the mechanical response of the conductor. Model accuracy is validated, and a field case is used to investigate the effects of wave height, current velocity, and wall thickness on the conductor’s mechanical characteristics. The results show that the maximum lateral displacement occurs in the underwater section, the maximum rotation angle occurs in the above-water section, and the maximum Mises stress is observed in the soil-embedded section. These findings enhance the predictive accuracy of the theoretical model and offer valuable guidance for engineering design.
-
Keywords:
- offshore drilling /
- drilling conductor /
- XXXX /
- control equations /
- mechanical properties
-
-
表 1 环境参数
Table 1 Environmental parameters
重现期/年 风速/(m·s−1) 波高/m 波周期/s 海面流速/(m·s−1) 1 31.6 13.8 10.8 1.58 10 38.1 18.7 13.4 2.07 25 42.7 20.7 14.3 2.32 -
[1] 童传新,张海荣,徐璧华,等. 深水井精细控压下套管研究[J]. 西南石油大学学报(自然科学版),2021,43(4):175–182. TONG Chuanxin, ZHANG Hairong, XU Bihua, et al. A study of precisely managed pressure during casing running in deep water wells[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(4): 175–182.
[2] 李中. 中国海油油气井工程数字化和智能化新进展与展望[J]. 石油钻探技术,2022,50(2):1–8. doi: 10.11911/syztjs.2022061 LI Zhong. Progress and prospects of digitization and intelligentization of CNOOC's oil and gas well engineering[J]. Petroleum Drilling Techniques, 2022, 50(2): 1–8. doi: 10.11911/syztjs.2022061
[3] 谢玉洪. 南海北部陆缘盆地深水区油气勘探新认识及攻关方向[J]. 天然气工业,2024,44(1):13–25. doi: 10.3787/j.issn.1000-0976.2024.01.002 XIE Yuhong. New insights and future research focuses on oil and gas exploration in the continental margin deepwater area of the northern South China Sea[J]. Natural Gas Industry, 2024, 44(1): 13–25. doi: 10.3787/j.issn.1000-0976.2024.01.002
[4] 杨进,徐国贤,刘书杰,等. 自升式钻井平台桩腿入泥深度计算研究[J]. 中国海上油气,2012,24(6):58–60. YANG Jin, XU Guoxian, LIU Shujie, et al. Research on leg penetration depth calculation of jack-up drilling platform[J]. China Offshore Oil and Gas, 2012, 24(6): 58–60.
[5] 吴景健,庞洪林,肖辉,等. 利用隔水导管提高平台承载力的方法[J]. 船海工程,2023,52(2):121–125. doi: 10.3963/j.issn.1671-7953.2023.02.027 WU Jingjian, PANG Honglin, XIAO Hui, et al. The method of improving the bearing capacity of platform by conductors[J]. Ship & Ocean Engineering, 2023, 52(2): 121–125. doi: 10.3963/j.issn.1671-7953.2023.02.027
[6] 傅超,杨进,刘华清,等. 多维度深水浅层建井方式优选方法研究[J]. 石油钻探技术,2024,52(3):40–46. doi: 10.11911/syztjs.2024051 FU Chao, YANG Jin, LIU Huaqing, et al. Multi-dimensional selection method for well construction in shallow formations of deepwater[J]. Petroleum Drilling Techniques, 2024, 52(3): 40–46. doi: 10.11911/syztjs.2024051
[7] ABDELAZIZ A Y, EL NAGGAR M H, OUDA M. Determination of depth-of-fixity point for laterally loaded vertical offshore piles: A new approach[J]. Ocean Engineering, 2021, 232: 109113. doi: 10.1016/j.oceaneng.2021.109113
[8] 杨进,刘书杰,周建良,等. 风浪流作用下隔水导管强度及安全性计算[J]. 中国海上油气,2006,18(3):198–200. doi: 10.3969/j.issn.1673-1506.2006.03.011 YANG Jin, LIU Shujie, ZHOU Jianliang, et al. Strength and security calculation on riser with the effect of wind, wave and current[J]. China Offshore Oil and Gas, 2006, 18(3): 198–200. doi: 10.3969/j.issn.1673-1506.2006.03.011
[9] 龚龙祥,付建红,林元华,等. 海流涡激效应对钻井隔水导管疲劳强度的影响[J]. 石油钻采工艺,2006,28(4):5–6. doi: 10.3969/j.issn.1000-7393.2006.04.002 GONG Longxiang, FU Jianhong, LIN Yuanhua, et al. Current vortext-induced effect to drilling riser fatigue strength[J]. Oil Drilling & Production Technology, 2006, 28(4): 5–6. doi: 10.3969/j.issn.1000-7393.2006.04.002
[10] 黄鑫,谢玉洪,杨进,等. 海上钻井隔水导管导向孔位置优化研究[J]. 石油钻采工艺,2009,31(3):10–13. doi: 10.3969/j.issn.1000-7393.2009.03.003 HUANG Xin, XIE Yuhong, YANG Jin, et al. Optimization study of drilling riser guiding holes[J]. Oil Drilling & Production Technology, 2009, 31(3): 10–13. doi: 10.3969/j.issn.1000-7393.2009.03.003
[11] 姜伟. 深水钻井隔水导管挠曲方程及固有频率研究[J]. 中国海上油气,2011,23(3):179–184. doi: 10.3969/j.issn.1673-1506.2011.03.009 JIANG Wei. Calculation and study on the flexure equation and natural frequency of deepwater drilling riser[J]. China Offshore Oil and Gas, 2011, 23(3): 179–184. doi: 10.3969/j.issn.1673-1506.2011.03.009
[12] 杨成,刘小刚,刘亚军,等. 渤海油田探井隔水导管整体力学特性分析[J]. 断块油气田,2011,18(5):666–668. YANG Cheng, LIU Xiaogang, LIU Yajun, et al. Analysis on overall mechanical properties of drilling riser for exploratory well in Bohai Oilfield[J]. Fault-Block Oil and Gas Field, 2011, 18(5): 666–668.
[13] WANG Teng. Response of conductor pipe induced by motions of jackup in cantilever mode[J]. Applied Mechanics and Materials, 2011, 94/96: 1447–1450. doi: 10.4028/www.scientific.net/AMM.94-96.1447
[14] BAERHEIM M, NORTH A, STEINKJER O. Analyses and measurements of conductor response for jack-up drilled wells in 110 m water depth in harsh environments[R]. OTC 19534, 2012.
[15] 谢仁军,刘书杰,杨进,等. 海上新型组合隔水导管抗冰极限承载力分析[J]. 船海工程,2013,42(5):176–179. doi: 10.3963/j.issn.1671-7953.2013.05.045 XIE Renjun, LIU Shujie, YANG Jin, et al. The ultimate load capacity analysis of ice-resistant for offshore new combination riser[J]. Ship & Ocean Engineering, 2013, 42(5): 176–179. doi: 10.3963/j.issn.1671-7953.2013.05.045
[16] 段宪文,朱宏武,胡飚,等. 基于ABAQUS的隔水导管横向变形与弯矩分析[J]. 石油矿场机械,2015,44(4):36–39. doi: 10.3969/j.issn.1001-3482.2015.04.009 DUAN Xianwen, ZHU Hongwu, HU Biao, et al. Analysis of lateral deformation and bending moment of drilling riser by ABAQUS[J]. Oil Field Equipment, 2015, 44(4): 36–39. doi: 10.3969/j.issn.1001-3482.2015.04.009
[17] 郑运虎,姜峰. 风波流联合作用下的浅海域隔水导管屈曲仿真[J]. 西华大学学报(自然科学版),2015,34(2):103–107. ZHENG Yunhu, JIANG Feng. The buckling simulation of drilling riser in shallow waters under the combined effects of wind, waves and currents[J]. Journal of Xihua University(Natural Science Edition), 2015, 34(2): 103–107.
[18] 罗勇. 海上延长测试过程钻井隔水导管力学特性[J]. 石油钻采工艺,2018,40(6):690–694. LUO Yong. A mechanical characteristics of drilling riser in the process of offshore extended well testing[J]. Oil Drilling & Production Technology, 2018, 40(6): 690–694.
[19] 杨仲涵,许发宾,韦龙贵,等. 南海西部油田表层隔水导管稳定性分析技术[J]. 钻采工艺,2019,42(6):13–16. doi: 10.3969/J.ISSN.1006-768X.2019.06.04 YANG Zhonghan, XU Fabin, WEI Longgui, et al. Technology used to analyze stability of conductor riser at western South China Sea oilfield[J]. Drilling & Production Technology, 2019, 42(6): 13–16. doi: 10.3969/J.ISSN.1006-768X.2019.06.04
[20] 牛成成,李梦刚,郑德帅,等. 基于有限元的浅冷海隔水导管强度校核新方法[J]. 石油机械,2017,45(1):38–42. NIU Chengcheng, LI Menggang, ZHENG Deshuai, et al. The new riser strength check technology for shallow cold sea oilfield based on finite element method[J]. China Petroleum Machinery, 2017, 45(1): 38–42.
[21] ZHANG Minghe, YANG Jin, WANG Yuanming, et al. Survivability study of marine drilling conductor considering soil disturbance[R]. ISOPE I-22-108, 2022.
[22] LI Shuzhan, YANG Jin, JIANG Kun, et al. Stability analysis of drilling risers in shallow-water subsea production system[R]. ISOPE I-24-190, 2024.
[23] 管志川,苏堪华,苏义脑. 深水钻井导管和表层套管横向承载能力分析[J]. 石油学报,2009,30(2):285–290. doi: 10.3321/j.issn:0253-2697.2009.02.023 GUAN Zhichuan, SU Kanhua, SU Yinao. Analysis on lateral load-bearing capacity of conductor and surface casing for deepwater drilling[J]. Acta Petrolei Sinica, 2009, 30(2): 285–290. doi: 10.3321/j.issn:0253-2697.2009.02.023
[24] 杨进,路保平. 极地冷海钻井技术挑战及关键技术[J]. 石油钻探技术,2017,45(5):1–7. YANG Jin, LU Baoping. The challenges and key technologies of drilling in the cold water area of the Arctic[J]. Petroleum Drilling Techniques, 2017, 45(5): 1–7.
[25] LIU Xiuquan, SUN Hexiang, LI Yanwei, et al. Theoretical modeling and analysis for mechanical properties of deepwater workover riser system[J]. Ocean Engineering, 2022, 257: 111701. doi: 10.1016/j.oceaneng.2022.111701
-
期刊类型引用(6)
1. 邱春阳,王重重,姜春丽,王俊,秦涛,杨倩云. 陕西榆林废弃钻井液固液分离技术研究. 精细石油化工. 2024(02): 48-51 . 百度学术
2. 葛罗. 大庆油田萨北区块中渗透砂岩油藏凝胶调剖剂运移吸附试验研究. 石油钻探技术. 2023(03): 119-125 . 本站查看
3. 王景. 临兴–神府井区废弃钻井液处理技术. 石油钻探技术. 2022(01): 60-64 . 本站查看
4. 景岷嘉,李武泉,蒋官澄. 油基钻井液劣质固相絮凝剂双十六烷基二甲基氯化铵. 钻井液与完井液. 2021(02): 164-169 . 百度学术
5. 王翔,郭继香,陈金梅. 油田深部调剖技术及其应用研究进展. 油田化学. 2020(04): 738-744 . 百度学术
6. 韩来聚,李公让. 胜利油田钻井环保技术进展及发展方向. 石油钻探技术. 2019(03): 89-94 . 本站查看
其他类型引用(3)