Key Drilling Technologies for Exploratory Wells in Deep Mesozoic Volcanic Rocks in Bohai Oilfield
-
摘要:
针对渤海油田中生界火山岩地层存在异常压力圈闭、裂缝发育和易漏失等地质难点,以及使用无固相钻井液保护储层的特殊要求,在深入分析渤海深部中生界火山岩探井钻井过程中面临漏失风险高、耐高温无固相钻井液耐温性能差、地层硬度高导致机械钻速低和非均质性强易发生井斜等技术难点的基础上,通过研究防漏堵漏技术、耐高温高密度无固相钻井液、钻井提速技术和动力防斜钻具组合,形成了渤海深部中生界火山岩探井钻井关键技术。渤海油田的2口深部中生界火山岩探井应用了该关键技术,显著提高了钻井效率,降低了钻井成本,并且这2口井测试获得了高产。研究和现场应用表明,渤海深部中生界火山岩探井钻井关键技术可以解决渤海深部中生界火山岩探井的钻井技术难题,为渤海油田中生界火山岩地层的后续勘探开发提供了技术支持,对类似复杂地质条件下的油气勘探也具有参考价值。
Abstract:Mesozoic volcanic rock formations in Bohai Oilfield have geological characteristics, such as abnormal pressure traps, well-developed fractures, and frequent lost circulation, etc. Based on the special requirements for protecting the reservoir using solid-free drilling fluids, an in-depth analysis of the high risk of lost circulation faced during the drilling process of exploratory wells in deep Mesozoic volcanic rocks in Bohai Oilfield was conducted, as well as the technical difficulties such as poor temperature resistance of high temperature-resistant solid-free drilling fluid, low rate of penetration due to high formation hardness, and well deviation caused by strong heterogeneity. By studying the lost circulation prevention and control technologies, solid-free drilling fluid with high temperature-resistant and high-density, drilling speeding-up technologies, and dynamic deviation prevention bottom hole assembly (BHA), the key drilling technologies for exploratory wells in deep Mesozoic volcanic rocks in Bohai Oilfield were formed. The technologies were applied in two exploratory wells in deep Mesozoic volcanic rocks in Bohai Oilfield, significantly improving the drilling efficiency, reducing the drilling cost, and yielded high production rate during testing. Research and field applications show that the developed key drilling technologies can solve the technical difficulties of drilling exploratory wells in deep Mesozoic volcanic rocks in Bohai Oilfield. They can also provide technical support for the subsequent exploration and development of Mesozoic volcanic rock formations in Bohai Oilfield and has important reference value for oil and gas exploration under similar complex geological conditions.
-
-
表 1 EZFLOW/HSD钻井液的基本性能
Table 1 Performances of EZFLOW/HSD drilling fluid
钻井液 温度/℃ 表观黏度/(mPa·s) 塑性黏度/(mPa·s) 动切力/Pa 黏度计读数 静切力/Pa API滤失量/mL ϕ6 ϕ3 初切 终切 EZFLOW 80 29 15 14 13 10 6.0 8.0 5.0 130 14 11 3 1 1 1.0 1.5 16.0 HSD 80 32 18 14 10 8 3.0 5.0 3.2 210 5 5 0 0 0 0 0 表 2 耐高温高密度无固相钻井液在不同温度下老化后的性能
Table 2 Performance of high temperature-resistant, high-density, and solid-free drilling fluid after aging at different temperatures
老化温度/℃ 表观黏度/(mPa·s) 塑性黏度/(mPa·s) 动切力/Pa 动塑比 黏度计读数 API滤失量/mL ϕ6 ϕ3 25 62 37 25 0.68 6 5 2.6 180 57 36 21 0.58 5 4 2.8 190 56 36 20 0.56 5 4 3.1 200 56 35 21 0.60 4 4 3.2 注:流变性测量温度50 ℃。 -
[1] BENYAMIN B. Facies distribution approach from log and seismic to identification hydrocarbon distribution in volcanic fracture[C]//The Ninth Formation Evaluation Symposium of Japan September 25-26, 2003, JNOC-TRC, Chiba, Japan.
[2] CERA A, PIERDOMENICO M, SODO A, et al. Spatial distribution of microplastics in volcanic lake water and sediments: relationships with depth and sediment grain size[J]. Science of the Total Environment, 2022, 829: 154659. doi: 10.1016/j.scitotenv.2022.154659
[3] TAN Fengqi, LI Hongqi, SUN Zhongchun, et al. Identification of natural gas fractured volcanic formation by using numerical inversion method[J]. Journal of Petroleum Science and Engineering, 2013, 108: 172–179. doi: 10.1016/j.petrol.2013.02.004
[4] 陈树民. 中国东、西部火山岩油气藏运聚成藏机理[J]. 天然气工业,2015,35(4):16–24. CHEN Shumin. Hydrocarbon migration and accumulation mechanism of volcanic reservoirs in eastern and western China[J]. Natural Gas Industry, 2015, 35(4): 16–24.
[5] 徐长贵. 双碳背景下中国海油三个万亿大气区勘探战略思考[J]. 中国海上油气,2023,35(6):1–12. XU Changgui. Strategic thinking on exploration of three trillion cubic meters gas provinces of CNOOC under the dual carbon target background[J]. China Offshore Oil and Gas, 2023, 35(6): 1–12.
[6] 徐长贵,周家雄,杨海风,等. 渤海海域油气勘探新领域、新类型及资源潜力[J]. 石油学报,2024,45(1):163–182. XU Changgui, ZHOU Jiaxiong, YANG Haifeng, et al. New fields, new types and resource potentials of oil-gas exploration in Bohai Sea[J]. Acta Petrolei Sinica, 2024, 45(1): 163–182.
[7] 许廷生. 渤海湾盆地岩浆侵入活动与油气成藏特征[J]. 特种油气藏,2021,28(1):81–85. XU Tingsheng. Research on the magmatic intrusion and oil and gas reservoir forming characteristics in Bohai Bay Basin[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 81–85.
[8] 薛德栋,郭沛文,张成富,等. 渤海油田高效投捞无缆分注工艺研究及应用[J]. 石油机械,2024,50(10):132–137. XUE Dedong, GUO Peiwen, ZHANG Chengfu, et al. Research and application of efficient dropping-fishing cableless separate zone injection technology in Bohai Oilfield[J]. China Petroleum Machinery, 2024, 50(10): 132–137.
[9] 冯青,张凡,王博,等. 生物纳米增注技术在渤海油田中低渗储层的应用[J]. 断块油气田,2025,32(1):153–158. FENG Qing, ZHANG Fan, WANG Bo, et al. Application of bio-nano increasing injection technology in medium and low permeability reservoirs of Bohai Oilfield[J]. Fault-Block Oil & Gas Field, 2025, 32(1): 153–158.
[10] 施和生,王清斌,王军,等. 渤中凹陷深层渤中19−6构造大型凝析气田的发现及勘探意义[J]. 中国石油勘探,2019,24(1):36–45. SHI Hesheng, WANG Qingbin, WANG Jun, et al. Discovery and exploration significance of large condensate gas fields in BZ19−6 Structure in deep Bozhong Sag[J]. China Petroleum Exploration, 2019, 24(1): 36–45.
[11] 徐长贵,于海波,王军,等. 渤海海域渤中19−6大型凝析气田形成条件与成藏特征[J]. 石油勘探与开发,2019,46(1):25–38. XU Changgui, YU Haibo, WANG Jun, et al. Formation conditions and accumulation characteristics of Bozhong 19−6 large condensate gas field in offshore Bohai Bay Basin[J]. Petroleum Exploration and Development, 2019, 46(1): 25–38.
[12] 施和生,牛成民,侯明才,等. 渤中13−2双层结构太古宇潜山成藏条件分析与勘探发现[J]. 中国石油勘探,2021,26(2):12–20. doi: 10.3969/j.issn.1672-7703.2021.02.002 SHI Hesheng, NIU Chengmin, HOU Mingcai, et al. Analysis of hydrocarbon accumulation conditions of double-layered Archaeozoic buried hill and major discovery of Bozhong 13−2 Oil and Gasfield, Bohai Sea area[J]. China Petroleum Exploration, 2021, 26(2): 12–20. doi: 10.3969/j.issn.1672-7703.2021.02.002
[13] 胡贺伟,李慧勇,于海波,等. 渤中21−22构造区断裂演化及其对油气的控制作用[J]. 东北石油大学学报,2016,40(2):36–46. HU Hewei, LI Huiyong, YU Haibo, et al. Fracture evolution of Bozhong 21−22 Structure Area and their control on hydrocarbons[J]. Journal of Northeast Petroleum University, 2016, 40(2): 36–46.
[14] 周家雄,杨海风,官大勇,等. 渤海湾盆地渤中26−6变质岩潜山大油田发现与认识创新[J]. 中国海上油气,2023,35(4):1–11. ZHOU Jiaxiong, YANG Haifeng, GUAN Dayong, et al. Discovery of BZ26−6 metamorphic rock buried hill oilfield in Bohai Bay Basin and understanding innovation[J]. China Offshore Oil and Gas, 2023, 35(4): 1–11.
[15] 徐长贵,周家雄,杨海风,等. 渤海湾盆地大型变质岩潜山油田勘探发现及地质意义[J]. 石油学报,2023,44(10):1587–1598. XU Changgui, ZHOU Jiaxiong, YANG Haifeng, et al. Discovery of large-scale metamorphic buried-hill oilfield in Bohai Bay Basin and its geological significance[J]. Acta Petrolei Sinica, 2023, 44(10): 1587–1598.
[16] 马英文,刘小刚. 抗高温无固相储层保护钻井液体系[J]. 石油钻采工艺,2018,40(6):726–729. MA Yingwen, LIU Xiaogang. A high-temperature & solid-free drilling fluid system with the property of reservoir protection[J]. Oil Drilling & Production Technology, 2018, 40(6): 726–729.
[17] 向雄,杨洪烈,刘喜亮,等. 南海西部超浅层气田水平井EZFLOW无固相弱凝胶钻井液研究与应用[J]. 石油钻探技术,2018,46(2):38–43. XIANG Xiong, YANG Honglie, LIU Xiliang, et al. Research and application of EZFLOW solid-free weak gel drilling fluid in horizontal wells in shallow gas fields in the western South China Sea[J]. Petroleum Drilling Techniques, 2018, 46(2): 38–43.
[18] 蔡冬梅,叶涛,鲁凤婷,等. 渤海海域中生界火山岩岩相特征及其识别方法[J]. 岩性油气藏,2018,30(1):112–120. CAI Dongmei, YE Tao, LU Fengting, et al. Lithofacies characteristics and identification methods of Mesozoic volcanic rocks in Bohai Sea[J]. Lithologic Reservoirs, 2018, 30(1): 112–120.
[19] 叶涛,韦阿娟,黄志,等. 基于主成分分析法与Bayes判别法组合应用的火山岩岩性定量识别:以渤海海域中生界为例[J]. 吉林大学学报(地球科学版),2019,49(3):873–880. YE Tao, WEI Ajuan, HUANG Zhi, et al. Quantitative identification of volcanic lithology based on comprehensive principal component analysis and Bayes discriminant method: a case study of Mesozoic in Bohai Bay[J]. Journal of Jilin University(Earth Science Edition), 2019, 49(3): 873–880.
[20] ZHANG He, DI Qinfeng, WANG Wenchang, et al. Lateral vibration analysis of pre-bent pendulum bottom hole assembly used in air drilling[J]. Journal of Vibration and Control, 2018, 24(22): 5213–5224. doi: 10.1177/1077546317747778
[21] 狄勤丰,胡菲菲,周波,等. 气体钻井预弯曲钟摆钻具控斜的动力学行为[J]. 天然气工业,2019,39(7):94–98. DI Qinfeng, HU Feifei, ZHOU Bo, et al. Dynamic behaviors of deviation control of the prebent pendulum BHA in gas drilling[J]. Natural Gas Industry, 2019, 39(7): 94–98.
[22] 刘宝生,杨进,刘小刚,等. 渤海油田探井非常规井眼防斜打快组合技术[J]. 石油钻采工艺,2018,40(3):293–296. LIU Baosheng, YANG Jin, LIU Xiaogang, et al. Combination technology of deviation prevention and quick drilling for exploratory wells in Bohai Oilfield[J]. Oil Drilling & Production Technology, 2018, 40(3): 293–296.
[23] 李磊,杨进,刘宝生,等. 渤海渤中区域深井井身结构优化[J]. 石油钻采工艺,2020,42(5):569–572. LI Lei, YANG Jin, LIU Baosheng, et al. Casing program optimization of deep wells in the central Bohai Area[J]. Oil Drilling & Production Technology, 2020, 42(5): 569–572.
[24] 李战奎,吴立伟,郭明宇,等. 渤中凹陷深层高压井地质工程一体化技术研究与应用[J]. 石油钻探技术,2024,52(4):193–201. LI Zhankui, WU Liwei, GUO Mingyu, et al. Research and application of integrated geological engineering technology for deep high-pressure wells in the Bozhong Sag[J]. Petroleum Drilling Techniques, 2024, 52(4): 193–201.
[25] 王虎,迟焕鹏,王胜建,等. 黔西地区石炭系页岩气钻井工程难点与对策[J]. 断块油气田,2024,31(5):909–915. WANG Hu, CHI Huanpeng, WANG Shengjian, et al. Difficulties and countermeasures of Carboniferous shale gas drilling engineering in western Guizhou[J]. Fault-Block Oil & Gas Field, 2024, 31(5): 909–915.
[26] 史配铭,倪华峰,贺会锋. 鄂尔多斯盆地深层煤岩气水平井水平段安全钻井关键技术[J]. 石油钻探技术,2025,53(1):17–23. SHI Peiming, NI Huafeng, HE Huifeng, et al. Key technologies for safe drilling in horizontal section of deep coal rock gas horizontal well in Ordos Basin[J]. Petroleum Drilling Techniques, 2025, 53(1): 17–23.