海上深部硬地层裸眼侧钻PDC异形齿冲击破岩机理研究

吴怡, 幸雪松, 陈杰, 杨玉贵, 陈立伟, 周长所

吴怡,幸雪松,陈杰,等. 海上深部硬地层裸眼侧钻PDC异形齿冲击破岩机理研究[J]. 石油钻探技术,2025,53(3):106−114. DOI: 10.11911/syztjs.2025052
引用本文: 吴怡,幸雪松,陈杰,等. 海上深部硬地层裸眼侧钻PDC异形齿冲击破岩机理研究[J]. 石油钻探技术,2025,53(3):106−114. DOI: 10.11911/syztjs.2025052
WU Yi, XING Xuesong, CHEN Jie, et al. Study on rock breaking mechanism of special-shaped PDC teeth for open-hole sidetracking in offshore deep hard formations [J]. Petroleum Drilling Techniques, 2025, 53(3):106−114. DOI: 10.11911/syztjs.2025052
Citation: WU Yi, XING Xuesong, CHEN Jie, et al. Study on rock breaking mechanism of special-shaped PDC teeth for open-hole sidetracking in offshore deep hard formations [J]. Petroleum Drilling Techniques, 2025, 53(3):106−114. DOI: 10.11911/syztjs.2025052

海上深部硬地层裸眼侧钻PDC异形齿冲击破岩机理研究

基金项目: 

中国海油“十四五”重大科技项目“海上低渗及潜山油气田复杂结构井技术”(编号:KJGG−2022−1003)资助。

详细信息
    作者简介:

    吴怡(1987—),男,江苏宿迁人,2008年毕业于中国石油大学(北京)土木工程专业,2024年获中国石油大学(北京)资源与环境专业博士学位,高级工程师,主要从事海洋钻井技术研究工作。E-mail:wuyi11@cnooc.com.cn

  • 中图分类号: TE52

Study on Rock Breaking Mechanism of Special-Shaped PDC Teeth for Open-Hole Sidetracking in Offshore Deep Hard Formations

  • 摘要:

    海上深部高围压硬质储层裸眼侧钻时,常规钻进方式和常规齿形PDC钻头吃入岩石困难,破岩效率较低。为解决该问题,建立了裸眼侧钻冲击破岩的真三维动力仿真模型,对比了不同齿形钻齿在相同作用下的破岩效果,分析了平面齿、斧形齿、三棱齿3种齿形PDC齿在冲击载荷作用下的破岩机制、不同时刻切削岩石的剪应力分布规律及各PDC异形齿破岩损伤差异;对比了各PDC异形齿在扭转冲击作用下,周向动载和轴向静载比对切削面以下岩石损伤的影响,以及PDC齿的齿形对切削深度与切向力的影响,揭示了PDC异形齿侧钻冲击破岩机理。研究表明,不同齿形PDC齿在不同破岩模式、不同围压、不同切削倾角下的破岩效果有所差异。研究结果可为硬地层侧钻破岩PDC钻头的个性化一趟式优化设计提供理论依据。

    Abstract:

    In open-hole sidetracking of offshore deep and hard reservoirs with high confining pressure, it is difficult for conventional drilling process and polycrystalline diamond compact (PDC) drill bits with conventional tooth shapes to penetrate formation, and rock breaking efficiency is limited as well. A true three-dimensional dynamic simulation model for open-hole sidetracking impact-induced rock breaking was established, and the rock breaking effects of different tooth shapes under the same action were compared. The rock breaking mechanism of three kinds of PDC teeth, namely, flat teeth, axe teeth, and prism teeth under impact load was analyzed, as well as the shear stress distribution at different moments of rock cutting and the damage difference of different special-shaped PDC teeth during rock breaking. The effects of circumferential dynamic load and axial static load of special-shaped PDC teeth under the torsional impact on the rock damage below the cutting surface were compared, as well as the impact of different PDC tooth shapes on the penetration depth and tangential force, and the rock breaking mechanism of special-shaped PDC teeth during sidetracking was revealed. It is found that the rock breaking efficiency of special-shaped PDC teeth are different under different rock breaking modes, different confining pressures, and different cutting inclination angles. The research results can provide a theoretical basis for the optimal design of the personalized one-trip PDC drill bit for sidetracking and rock breaking in hard formations.

  • 图  1   PDC异形齿冲击破岩仿真模型及其边界条件

    Figure  1.   Simulation model of impact-induced rock breaking of special-shaped PDC teeth and its boundary conditions

    图  2   PDC齿切削岩石过程中不同时刻的剪应力分布

    Figure  2.   Shear stress distribution at different moments of rock cutting by PDC teeth

    图  3   不同齿形钻齿切削后的岩石损伤模型

    Figure  3.   Rock damage model after cutting by drill teeth with different tooth shapes

    图  4   不同动静载比值对应的载荷曲线

    Figure  4.   Load curves corresponding to different ratios of dynamic and static loads

    图  5   不同动静载比值下的岩石损伤情况

    Figure  5.   Rock damage under different ratios of dynamic and static loads

    图  6   不同动静载比值对应的切削深度

    Figure  6.   Penetration depth under different ratios of dynamic and static loads

    图  7   不同齿形钻齿对应的切削深度与切向力随时间变化曲线

    Figure  7.   Variation of penetration depth and tangential force of drill teeth with different tooth shapes with time

    图  8   不同围压条件下PDC异形齿倾角和破岩效果的关系

    A为鞍形齿;B为奔驰齿;F为斧形齿;J为尖形齿;S为三棱齿;SA为双曲面齿;T为椭圆齿;TF为椭圆斧形齿;Y为圆柱齿(平面齿);Z为锥形齿

    Figure  8.   Relationship between inclination angle and rock breaking efficiency of special-shaped PDC teeth under different confining pressures

    图  9   不同围压下的PDC齿选型优先级评价图谱

    Figure  9.   Evaluation map of PDC tooth selection priority under different confining pressures

  • [1] 王文义,程宏岗,徐淑娟,等. 东海盆地西湖凹陷中西部花港组物源方向判别与源区性质分析[J]. 中国海上油气,2023,35(2):33–43.

    WANG Wenyi, CHENG Honggang, XU Shujuan, et al. Provenance indication and source characteristics of Huagang Formation in the central and western Xihu Sag of the East China Sea Basin[J]. China Offshore Oil and Gas, 2023, 35(2): 33–43.

    [2] 薛永安,李慧勇,许鹏,等. 渤海海域中生界覆盖型潜山成藏认识与渤中13−2大油田发现[J]. 中国海上油气,2021,33(1):13–22.

    XUE Yongan, LI Huiyong, XU Peng, et al. Recognition of oil and gas accumulation of Mesozoic covered buried hills in Bohai Sea area and the discovery of BZ 13−2 Oilfield[J]. China Offshore Oil and Gas, 2021, 33(1): 13–22.

    [3] 王晨杰,张新涛,徐春强,等. 渤中凹陷428构造中生界火山岩优质储层主控因素[J]. 海洋地质前沿,2022,38(2):69–75.

    WANG Chenjie, ZHANG Xintao, XU Chunqiang, et al. Main controlling factors of high-quality Mesozoic volcanic rock reservoirs in the Structure 428 of Bozhong Sag[J]. Marine Geology Frontiers, 2022, 38(2): 69–75.

    [4] 薛永安,王奇,牛成民,等. 渤海海域渤中凹陷渤中19−6深层潜山凝析气藏的充注成藏过程[J]. 石油与天然气地质,2020,41(5):891–902. doi: 10.11743/ogg20200501

    XUE Yongan, WANG Qi, NIU Chengmin, et al. Hydrocarbon charging and accumulation of BZ 19−6 gas condensate field in deep buried hills of Bozhong Depression, Bohai Sea[J]. Oil & Gas Geology, 2020, 41(5): 891–902. doi: 10.11743/ogg20200501

    [5] 李慧勇,牛成民,许鹏,等. 渤中13−2大型整装覆盖型潜山油气田的发现及其油气勘探意义[J]. 天然气工业,2021,41(2):19–26.

    LI Huiyong, NIU Chengmin, XU Peng, et al. Discovery of Bozhong 13−2 Archean large monoblock volatile buried hill oilfield and its oil and gas exploration significance[J]. Natural Gas Industry, 2021, 41(2): 19–26.

    [6] 徐鲲,陶林,李文龙,等. 渤海油田变质岩潜山油藏钻井关键技术[J]. 石油钻探技术,2023,51(3):16–21. doi: 10.11911/syztjs.2023070

    XU Kun, TAO Lin, LI Wenlong, et al. Key drilling technologies for metamorphic buried hill reservoirs in Bohai Oilfield[J]. Petroleum Drilling Techniques, 2023, 51(3): 16–21. doi: 10.11911/syztjs.2023070

    [7] 李战奎,吴立伟,郭明宇,等. 渤中凹陷深层高压井地质工程一体化技术研究与应用[J]. 石油钻探技术,2024,52(2):194–201. doi: 10.11911/syztjs.2024031

    LI Zhankui, WU Liwei, GUO Mingyu, et al. Research and application of integrated geological engineering technology for deep high-pressure wells in the Bozhong Sag[J]. Petroleum Drilling Techniques, 2024, 52(2): 194–201. doi: 10.11911/syztjs.2024031

    [8] 王宏亮,刘超,夏竹君. 多分支水平井裸眼悬空侧钻技术在南海东部某油田的应用[J]. 海洋石油,2024,44(3):110–114. doi: 10.3969/j.issn.1008-2336.2024.03.110

    WANG Hongliang, LIU Chao, XIA Zhujun. Application of multi-branch horizontal well suspended open hole sidetracking technology in an oil field of the eastern South China Sea[J]. Offshore Oil, 2024, 44(3): 110–114. doi: 10.3969/j.issn.1008-2336.2024.03.110

    [9] 柳贡慧,李玉梅,李军,等. 复合冲击破岩钻井新技术[J]. 石油钻探技术,2016,44(5):10–15.

    LIU Gonghui, LI Yumei, LI Jun, et al. New technology with composite percussion drilling and rock breaking[J]. Petroleum Drilling Techniques, 2016, 44(5): 10–15.

    [10] 李玉梅,张涛,苏中,等. 复合冲击频率配合特性模拟研究[J]. 石油机械,2019,47(9):30–36.

    LI Yumei, ZHANG Tao, SU Zhong, et al. Simulation study on compound percussion frequency matching characteristics[J]. China Petroleum Machinery, 2019, 47(9): 30–36.

    [11] 刘伟,席岩,查春青,等. 不同冲击钻井方式PDC切削齿侵彻深度及破岩机制研究[J]. 新疆石油天然气,2023,19(2):17–23. doi: 10.12388/j.issn.1673-2677.2023.02.002

    LIU Wei, XI Yan, ZHA Chunqing, et al. Study on penetration depth and rock breaking mechanism of PDC cutter in different percussion drilling methods[J]. Xinjiang Oil & Gas, 2023, 19(2): 17–23. doi: 10.12388/j.issn.1673-2677.2023.02.002

    [12] 查春青,柳贡慧,李军,等. 复合冲击钻具的研制及现场试验[J]. 石油钻探技术,2017,45(1):57–61.

    ZHA Chunqing, LIU Gonghui, LI Jun, et al. Development and field application of a compound percussive jet[J]. Petroleum Drilling Techniques, 2017, 45(1): 57–61.

    [13] 李洪超,陈勇,刘殿书,等. 岩石RHT模型主要参数敏感性及确定方法研究[J]. 北京理工大学学报,2018,38(8):779–785.

    LI Hongchao, CHEN Yong, LIU Dianshu, et al. Sensitivity analysis determination and optimization of rock RHT parameters[J]. Transactions of Beijing Institute of Technology, 2018, 38(8): 779–785.

    [14]

    TEALE R. The concept of specific energy in rock drilling[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1965, 2(1): 57–73.

    [15]

    EVANS I. A theory of the basic mechanics of coal ploughing[C]//Mining Research. Oxford: Pergamon, 1962: 761-798.

    [16] 席岩,夏铭莉,孙念,等. 扭转冲击参数对PDC钻头单齿破岩效率的影响[J]. 石油钻采工艺,2021,43(5):574–579.

    XI Yan, XIA Mingli, SUN Nian, et al. Influence of torsion impact parameters on single-tooth rock breaking efficiency of PDC bit[J]. Oil Drilling & Production Technology, 2021, 43(5): 574–579.

    [17]

    ZHU Xiaohua, LUO Yunxu, LIU Weiji, et al. Rock cutting mechanism of special-shaped PDC cutter in heterogeneous granite formation[J]. Journal of Petroleum Science and Engineering, 2022, 210: 110020. doi: 10.1016/j.petrol.2021.110020

  • 期刊类型引用(13)

    1. 陈小元,吴波,史怀忠,熊超,屈子骁,王委,周志刚. 涡轮驱动式振荡旋转套管引鞋研制及应用. 石油机械. 2025(01): 55-61 . 百度学术
    2. 于小波,万发明,朱云波,和传健,马广来. 国内外漂浮工具典型结构及攻关建议. 石油和化工设备. 2024(02): 46-49+57 . 百度学术
    3. 李高刚,魏祥高,汪孝贵,唐健,芦宏斌,马兰波,张亥先,杨海斌. 苏里格气田长水平段水平井钻井关键技术——以S77-35-H5井为例. 天然气技术与经济. 2024(02): 8-13 . 百度学术
    4. 王磊. 水平井漂浮下套管技术研究与应用. 西部探矿工程. 2023(04): 80-82 . 百度学术
    5. 张新亮,金磊,张瑞,张冠林,冯丽莹. 中深层水平井双漂浮下套管关键技术. 石油钻探技术. 2023(06): 57-63 . 本站查看
    6. 史配铭,倪华峰,石崇东,王学枫,王万庆,屈艳平. 苏里格致密气藏超长水平段水平井钻井完井关键技术. 石油钻探技术. 2022(01): 13-21 . 本站查看
    7. 何立成. 全通径漂浮接箍工具的研究与应用. 中国石油大学胜利学院学报. 2022(02): 83-86 . 百度学术
    8. 张冠林,赵聪,梁晓阳,宋剑鸣,曹博,郑杜建. 尾管漂浮减阻系统设计. 钻采工艺. 2021(03): 76-79 . 百度学术
    9. 江乐,梅明佳,段宏超,魏周胜,李勇,吴晋波. 华H50-7井超4000 m水平段套管下入研究与应用. 石油机械. 2021(08): 30-38 . 百度学术
    10. 柳伟荣,倪华峰,王学枫,石仲元,谭学斌,王清臣. 长庆油田陇东地区页岩油超长水平段水平井钻井技术. 石油钻探技术. 2020(01): 9-14 . 本站查看
    11. 李社坤,周战云,任文亮,秦克明,侯平. 大位移水平井旋转自导式套管浮鞋的研制及应用. 石油钻采工艺. 2017(03): 323-327 . 百度学术
    12. 周战云,李社坤,郭子文,刘华俊,包振江,郭继刚. 页岩气水平井固井工具配套技术. 石油机械. 2016(06): 7-13 . 百度学术
    13. 陈保山,程智远,徐敏,陈凌云,陈林川,郑忠茂. 新型?139.7mm漂浮接箍的研制与应用. 石油机械. 2016(11): 29-32 . 百度学术

    其他类型引用(2)

图(9)
计量
  • 文章访问数:  47
  • HTML全文浏览量:  18
  • PDF下载量:  13
  • 被引次数: 15
出版历程
  • 收稿日期:  2025-01-24
  • 修回日期:  2025-05-12
  • 网络出版日期:  2025-06-04
  • 刊出日期:  2025-06-27

目录

    /

    返回文章
    返回