Current Status and Prospects of Key Theories and Technologies for Marine Deep Drilling
-
摘要:
为破解海洋深层油气资源高效开发面临的安全钻进与提速增效难题,系统梳理了国内外海洋深层钻井技术研究进展,通过文献调研与工程案例分析,揭示了海洋深层钻井的核心技术瓶颈与发展路径。研究表明,深海钻井面临储层高温高压、硬岩地层破岩效率低、所取岩心质量差、井眼轨迹控制难等共性挑战;当前技术体系在地温场预测、耐高温破岩工具、长筒取心装置及导向钻井系统等方面取得阶段性突破,但在高温碎岩机理认知、智能钻测控装备、长效井壁稳定等领域仍存在明显短板。基于全生命周期工程需求,提出了5大攻关方向:建立井筒多场耦合温度预测模型,研发PDC/孕镶齿复合破岩工具与井底动力驱动取心系统,构建全机械式耐高温井斜测控结构,开发高封堵强抑制钻井液体系。研究结果可为我国海洋深层油气安全高效开发提供系统的技术发展框架与工程实践指导。
Abstract:To address the challenges of safe drilling and speed improvement and efficiency enhancement in the development of marine deep oil and gas resources, this study systematically reviews the global research progress in marine deep drilling technologies. Through literature review and engineering case analysis, the core technical bottlenecks and development pathways of marine deep drilling were identified. The study reveals the common challenges in marine deep drilling, including high-temperature and high-pressure in reservoirs, low rock-breaking efficiency in hard formations, poor core quality, and difficulties in wellbore trajectory control, etc. While current technologies have achieved some phased breakthroughs in geothermal field prediction, high-temperature rock-breaking tools, long-barrel coring devices, and steering drilling systems, significant gaps still remain in the areas such as high-temperature rock breaking mechanisms, intelligent drilling measurement and control equipment, and long-term wellbore stability, etc. Based on full life cycle engineering requirements, five key research directions are proposed: establishing a multi-field coupled temperature prediction model for wellbores, developing hybrid polycrystalline diamond compact (PDC)/impregnated diamond cutter (DIC)rock-breaking tools, developing downhole motor-driven coring systems, designing fully mechanical high-temperature-resistant well inclination measurement and control structures, and developing high sealing and strong inhibition drilling fluid systems. These findings provide a systematic technological development framework and practical guidance for the safe and efficient development of marine deep oil and gas resources.
-
深层干热岩储层具有温度高、硬度大和基质渗透率低等特点,需采用水力压裂等方法改造致密干热岩储层,构建复杂的裂缝网络体系,提高循环工质换热体积,实现高效循环取热[1–6]。干热岩水力压裂是一个多物理场耦合问题,需要考虑位移、流体压力、温度等多个物理量之间的相互影响[7–17]。H. Hofmann等人[18]通过研究发现,复杂裂缝网络有助于提高干热岩储层开采时的经济效益。Zhang Yanjun等人[19]提出,水平井分段压裂技术可提高循环工质的换热效率,从而提高裂缝型干热岩储层的开采效益。谢紫霄等人[20]通过干热岩压裂物理模拟试验,发现水力裂缝沟通天然裂缝后能显著提高裂缝渗流系数,实现地热能的高效开发。干热岩储层裂缝扩展过程中受多因素综合影响,且温度影响不容忽略。
相场法是一种基于系统能量最小化原理判断裂缝扩展的有限元方法,在处理多物理场耦合问题时具有网格处理简单、结果准确性高和计算量小等优点,近年来被广泛应用于水力压裂数值模拟领域[21–26]。侯冰等人[23]基于相场法建立了流−固−化耦合酸压裂缝扩展模型,分析了孔洞结构对酸压裂缝的影响。N. Noii等人[25]提出适用于正交各向异性的相场裂缝描述方法,对相场裂缝建模进行了初步分析。
相场法在处理复杂地层多物理场耦合裂缝扩展模拟方面具有显著优势。基于相场法建立了流−固−热耦合裂缝扩展数值模型,采用自适应网格方法平衡计算成本与计算精度,通过解析解验证模拟结果的准确性;在此基础上,研究了干热岩储层水力裂缝的起裂与扩展规律,分析了地质与工程因素对干热岩储层水力裂缝扩展的影响,以期为深层干热岩储层水力压裂提供参考。
1. 深层干热岩储层水力压裂数值模型
基于相场法构建流−固−热耦合裂缝扩展数值模型时,其核心思想是引入无量纲相场参数ϕ描述空间点的物理状态。ϕ的取值在 [0,1]区间,ϕ= 0 表示材料断裂,ϕ= 1 表示材料未断裂, 0 < ϕ < 1 表示材料处于裂缝过渡区域。该参数可以描述裂缝形态,同时可作为指示参数耦合多物理场方程。
1.1 控制方程
1.1.1 相场−位移控制方程
在热弹性多孔介质的相场裂缝模型能量泛函基础上[24–25],将裂缝扩展问题转化为系统能量最小化问题并求解,可得相场−位移控制方程强形式:
−[(1−k)ϕε(u)−Gcε∇ϕ−Gcε1−ϕ−2(αB−1)ϕ(p−p0)∇⋅u+2ϕ∇(p−p0)u−2(αTKd+C)ϕ(θ−θ0)∇⋅u+2Cϕ∇(θ−θ0)u]∂tϕ=0 (1) −∇⋅[((1−k)ϕ2+k)σ+(u)+σ−(u)]+(α−1)∇(ϕ2p)+ϕ2∇p+(αTKd+CT)∇(ϕ2θ)+ϕ2∇θ=0 (2) 式中:u为位移,m;k为正则化参数;ε(u)为应变;ε为正则化参数;αB为Biot系数;αT为热膨胀系数,℃-1 ;p为流体压力,Pa;p0为初始压力,Pa;
θ 为温度,℃;θ0 为初始温度,℃;C为界面热应力常数,Pa/℃;σ+(u)为裂缝驱动力,Pa;σ-(u)为裂缝非驱动力,Pa;在二维问题中,Kd=μ+λ,μ,λ为Lame系数;Gc为临界能量释放率,Pa·m。1.1.2 温度场控制方程
基于相场参数的定义,可构建指示函数:
Xf=1−ϕ,Xr=ϕ (3) 基于局部热平衡假设,同一空间点处温度值具有唯一性。引入指示函数后,得到温度场控制方程的有限元强形式:
(XfCf+XrCr)∂θ∂t=(XfKf+XrKr)[∂∂x(∂θ∂x)+∂∂y(∂θ∂y)]+v∇θ+Qi (4) 式中:Cf为压裂液热容,kJ·m3/℃ ;Cr为储层热容,kJ·m3/℃ ;Kf为压裂液热传导系数,W/(m·℃);Kr为地层岩石热传导系数,W/(m·℃); v为流体流速,m/s;Qi为注入热源,J。
1.1.3 流体压力控制方程
对于流体场,其物质守恒方程为:
∂t(ρfφ∗)+∇⋅(ρfv)=q (5) 式中:ρf为液体密度,g/cm3;φ*为孔隙度;q为单位时间内注入的压裂液质量,g。
计算流体流速时忽略重力影响,表达式为:
v=−KηΔp (6) 式中:K为渗透率,D;η为液体黏度,mPa·s。
φ∗=φ∗0+αB∇⋅u+1M(p−p0)+KT(θ−θ0) (7) 式中:
φ∗0 为初始时刻孔隙度;M为Biot系数;KT为孔隙热膨胀系数,℃−1。流体压力控制方程的强形式为:
ρf∂t(αB∇⋅u+1Mp+KTθ)−ρfKη∇⋅Δp=q (8) 1.2 自适应网格
模型中以相场参数为指示参数,引入自适应网格技术,在保证模拟精度的前提下,减少模型的计算量。自适应网格算法流程如图1所示。
自适应网格可对同一时间步内的裂缝扩展状态进行多次求解,但与全局细分网格相比节点数量少、计算简单,计算精度仍保持良好[26]。
1.3 多物理场耦合求解
模型共包括固体场模块、温度场模块和流体场模块等3个模块,模型中包括4个解变量,分别为相场参数(ϕ)、位移(u)、温度(T)和流体压力(p)。在固体场模块中,采用全耦合方法求解相场参数与位移;利用温度场模块、流体场模块分别求解温度和压力值,并采用固定应力迭代的方式与固体场耦合。具体流程如下:
1)在任意时间步tn+1,给定上一个时间步的解θn,un,ϕn和pn。
2)基于固定应力法,构建迭代序列l=0,1,2…,定义初始解变量ul=0=un,ϕl=0=ϕn,pl=0=pn,θl=0=θn。
3)给定θn,un,ϕn,pn,ul,ϕl和pl,求解式(4),得到θl+1。
4)给定θn,un,ϕn,pn,ul,ϕl和θl,求解式(8)获得pl+1。
5)给定θn,un,ϕn,pn,pl和θl,求解式(1)和式(2),可得{ul+1,ϕ l+1}。
6)若max{||pl+1−pl||,||θl+1−|θl||,||ul+1−ul||,||ϕl+1−ϕl||}≤TOLfs,则迭代收敛(TOLfs为固定应力法容差,取10 -8),令pn+1=pl+1,θn+1=θl+1,un+1=ul+1,ϕn+1=ϕl+1;若迭代不收敛,则令ul+1=ul,ϕl+1=ϕl,pl+1=pl,θl+1=θl,重复步骤3)—5),直至满足收敛条件。
7)检查网格系统是否满足计算精度要求,若不满足,则更新自适应网格系统。
8)输出θn+1,un+1, ϕn+1和pn+1作为时间步tn+1的解变量,并进行下一个时间步的计算。
1.4 初始条件与边界条件
模拟二维条件下的裂缝扩展过程,忽略重力影响与垂向应变。模型初始状态及边界条件如图2所示。
模型长30 cm,宽30 cm。设置天然裂缝等结构时,将对应位置相场参数固定为0,其余岩石基质区域处相场参数设置为1,进行模拟分析,根据相场参数判断裂缝扩展情况。设定压裂液温度为20 ℃,岩石弹性模量为40 GPa,泊松比为0.20,岩石密度为2.50 g/cm3,Biot系数为0.80,渗透率为1 mD,地层岩石热容为2.0 MJ·m3/℃ ,压裂液热容4.2 MJ·m3/℃ ,地层岩石热传导系数为0.63 W/(m·℃)。
1.5 解析解验证
相场裂缝模型中,最小网格尺寸受网格细分次数控制。采用自适应网格方法,全局细分5次、局部细分3次时,最小网格尺寸为1.17 mm;采用全局网格细分方法,全局细分8次时,最小网格尺寸同样为1.17 mm。固定边界位移,分别采用全局细分网格与自适应网格对裂缝扩展进行模拟,模拟结果如图3所示。
无限大线弹性物体内有一条缝内压力均匀分布的裂缝,其裂缝宽度的计算公式为[27]:
w=4(1−ν2)pfE√c2−y2 (9) 式中:w为裂缝宽度,mm;pf 为裂缝内流体压力,Pa;c为裂缝半缝长,mm;y为裂缝内某点到裂缝中心点的距离,mm;
ν 为岩石泊松比;E为岩石弹性模量,GPa。将流体压力代入式(9),计算裂缝宽度解析解,并与不同网格方案下裂缝宽度对比,结果如图4所示。
模拟结果表明,裂缝宽度的数值解与解析解吻合程度较好,自适应网格与全局细分网格的模拟结果相接近。自适应网格方法节点少,算力消耗低,计算相场裂缝模型时有显著优势。
2. 地质与工程因素对裂缝扩展的影响
2.1 温度
温度场的变化会造成岩石体积变化,在系统内部互相约束,从而产生热应力[28–29]。为研究温度对水力裂缝起裂与扩展的影响,设置初始地层温度分别为20,100和200 ℃,压裂液注入温度均为20 ℃,排量均为20 mL/min,边界应力分别为10和7 MPa,裂缝长度变化趋势如图5所示。
模拟过程中,由于压裂液温度低于地层温度,热应力呈现为拉应力,且地层温度越高,热应力越大;由于水力裂缝以拉伸缝为主,热应力在裂缝扩展过程中起辅助作用。压裂液排量相同时,地层温度越高,裂缝扩展速度越快,起裂压力越低。真实干热岩储层中,岩石不同矿物热膨胀时存在各向异性,热应力方向与大小更为复杂,更容易产生局部应力集中;若地层中微裂缝发育,热应力易激活并诱导微裂缝起裂,提高水力裂缝复杂程度,且热应力越大,微裂缝激活程度越高。
2.2 压裂液排量
为探究不同压裂液排量对水力裂缝扩展的影响,设置压裂液排量分别为10,20和30 mL/min,地层初始温度均为200 ℃,压裂液温度均为20 ℃,边界应力分别为10和7 MPa,注液30 s后,模拟结果如图6所示。
从图6可以看出,压裂液排量为10 mL/min时,缝长为11.63 cm;压裂液排量为20 mL/min时,缝长为20.26 cm;压裂液排量为30 mL/min时,缝长为27.48 cm。研究表明,随着压裂液排量增加,液体憋压速度更快,裂缝周边岩石温度降低更明显。干热岩储层水力裂缝扩展受流体压力和热应力的共同驱动,裂缝扩展速度更快,裂缝宽度也随之增大,更有利于后续循环介质的注入与热交换。
2.3 天然裂缝夹角
为探究天然裂缝对水力裂缝扩展的影响,设置天然裂缝与水平最大主应力方向的夹角分别为90°,45°和20°,地层初始温度均为200 ℃,压裂液温度均为20 ℃,压裂液排量为20 mL/min,边界应力分别为10和7 MPa,模拟结果如图7所示。
水力压裂裂缝起裂后沿水平最大主应力方向扩展,遇到天然裂缝后发生转向并沟通天然裂缝。天然裂缝与水平最大主应力方向夹角为90°时,水力裂缝转向不明显,沟通天然裂缝后在天然裂缝两侧同时起裂并扩展,扩展角度与最大水平地应力夹角约为45°,2条裂缝呈分离趋势。岩石温度在水力压裂裂缝与天然裂缝沟通处降幅较大,主要原因为压裂液在该区域流动情况更复杂,传热效率高。
天然裂缝与水平最大主应力方向夹角为45°时,水力裂缝转向效果较明显,沟通天然裂缝后在天然裂缝两侧起裂并扩展,左右两侧扩展速度差异明显,左侧扩展速度更快,这是因为该侧与水平最大主应力方向夹角较小,扩展速度更快。另外,岩石温度在水力裂缝与天然裂缝右侧夹角处降低幅度较大,主要是该侧天然裂缝与水力压裂裂缝距离较近,传热效率更高。
天然裂缝与水平最大主应力方向夹角为20°时,天然裂缝诱导水力压裂裂缝产生转向现象。水力压裂裂缝沟通天然裂缝后在天然裂缝两侧起裂并扩展,左右两侧扩展速度差异明显,左侧扩展速度更快,裂缝沿水平最大主应力方向继续扩展。岩石温度在水力压裂裂缝与天然裂缝右侧夹角处降低幅度较大。
基于上述模拟结果可知,水力压裂裂缝遇到天然裂缝后易沟通天然裂缝,天然裂缝与水平最大主应力夹角越小,转向现象越明显。水力压裂裂缝与天然裂缝沟通位置流动情况复杂,传热效率高。水力压裂裂缝再次起裂方向受到地应力与天然裂缝方向的共同作用,在水平最大主应力方向夹角较小的方向扩展迅速,在水平最大主应力方向夹角较大的方向扩展较慢,且该侧岩石降温幅度更大。
2.4 多天然裂缝干扰下裂缝扩展
为探究多天然裂缝干扰下干热岩储层水力裂缝扩展力学行为,设置不同地应力与排量进行模拟。单侧天然裂缝条数为2条,天然裂缝与水平最大主应力方向夹角为45°,地层初始温度为200 ℃,压裂液温度为20 ℃,压裂液排量分别为20 和50 mL/min,边界应力差分别为3和8 MPa,模拟结果如图8所示。
地层中存在多条天然裂缝时,水力压裂裂缝优先与距离最近的天然裂缝发生相互作用。地应力差为3 MPa、压裂液排量为20 mL/min时,水力压裂裂缝在靠近天然裂缝时轻微转向并开启初条天然裂缝,随后在天然裂缝尖端二次起裂;地应力差为8 MPa、压裂液排量为20 mL/min时,水力压裂裂缝靠近天然裂缝无明显转向现象,开启初条天然裂缝后在裂缝尖端二次起裂;地应力差为8 MPa、压裂液排量增加至50 mL/min时,水力压裂裂缝贯穿初条天然裂缝并继续扩展,由于水力压裂裂缝贯穿天然裂缝后会消耗水力能量,因此仅能贯穿单条天然裂缝。
3. 结 论
1)基于相场法建立了流−固−热多场耦合裂缝扩展数值模型,根据能量最小化原理计算裂缝形态,无需额外添加裂缝扩展准则,模型搭建简单,可用于干热岩储层水力裂缝扩展模拟研究。
2)干热岩储层水力压裂过程中,热应力体现为拉应力,有助于增加裂缝开度,在裂缝扩展过程中起辅助作用。压裂液与地层温度差越高,排量越大,热应力影响效果越显著;若地层中微裂缝发育,热应力易激活并诱导微裂缝起裂,提高水力压裂裂缝的复杂程度。
3)地层中存在多条天然裂缝时,水力压裂裂缝优先与距离最近的天然裂缝发生相互作用。水力压裂裂缝遇到天然裂缝后易沟通天然裂缝,天然裂缝与水平最大主应力方向夹角越小,地应力差越小,转向现象越明显。水力压裂裂缝再次起裂时沿天然裂缝方向起裂,且向水平最大主应力方向偏转。
-
-
[1] 赵文智,窦立荣. 中国陆上剩余油气资源潜力及其分布和勘探对策[J]. 石油勘探与开发,2001,28(1):1–5. doi: 10.3321/j.issn:1000-0747.2001.01.002 ZHAO Wenzhi, DOU Lirong. Potential, distribution and exploration strategy of petroleum resources remained onshore China[J]. Petroleum Exploration and Development, 2001, 28(1): 1–5. doi: 10.3321/j.issn:1000-0747.2001.01.002
[2] 李剑,佘源琦,高阳,等. 中国陆上深层—超深层天然气勘探领域及潜力[J]. 中国石油勘探,2019,24(4):403–417. doi: 10.3969/j.issn.1672-7703.2019.04.001 LI Jian, SHE Yuanqi, GAO Yang, et al. Onshore deep and ultra-deep natural gas exploration fields and potentials in China[J]. China Petroleum Exploration, 2019, 24(4): 403–417. doi: 10.3969/j.issn.1672-7703.2019.04.001
[3] 汪海阁,张佳伟,黄洪春,等. 墨西哥湾万米级特深井钻完井实践与启示[J]. 石油钻探技术,2024,52(2):12–23. doi: 10.11911/syztjs.2024121 WANG Haige, ZHANG Jiawei, HUANG Hongchun, et al. Inspiration and practice of drilling and completion in 10 000-meter ultra-deep wells in the Gulf of Mexico[J]. Petroleum Drilling Techniques, 2024, 52(2): 12–23. doi: 10.11911/syztjs.2024121
[4] 张锦宏,张波,曹明,等. 中国石化“深地工程”油气测试关键技术及展望[J]. 石油钻探技术,2024,52(2):48–57. doi: 10.11911/syztjs.2024037 ZHANG Jinhong, ZHANG Bo, CAO Ming, et al. Key technologies and prospects for oil and gas testing in Sinopec’s “Deep Underground Engineering”[J]. Petroleum Drilling Techniques, 2024, 52(2): 48–57. doi: 10.11911/syztjs.2024037
[5] 李真祥. 通南巴构造超深高压气井钻井作业的难点及对策[J]. 天然气工业,2003,23(2):50–53. doi: 10.3321/j.issn:1000-0976.2003.02.014 LI Zhenxiang. Difficulties and countermeasures of drilling ultra-deep and high-pressure gas wells in Tong-Nan-Ba structure[J]. Natural Gas Industry, 2003, 23(2): 50–53. doi: 10.3321/j.issn:1000-0976.2003.02.014
[6] JIANG Guangzheng, HU Shengbiao, SHI Yizuo, et al. Terrestrial heat flow of continental China: updated dataset and tectonic implications[J]. Tectonophysics, 2019, 753: 36–48. doi: 10.1016/j.tecto.2019.01.006
[7] VESPASIANO G, MARINI L, MUTO F, et al. A multidisciplinary geochemical approach to geothermal resource exploration: the Spezzano Albanese thermal system, southern Italy[J]. Marine and Petroleum Geology, 2023, 155: 106407. doi: 10.1016/j.marpetgeo.2023.106407
[8] CHATTERJEE S, DUTTA A, GUPTA R K, et al. Genesis, evolution, speciation and fluid-mineral equilibrium study of an unexplored geothermal area in Northeast Himalaya, India[J]. Geothermics, 2022, 105: 102483. doi: 10.1016/j.geothermics.2022.102483
[9] CIONI R, MARINI L. A thermodynamic approach to water geothermometry[M]. Cham: Springer, 2020.
[10] BATIR J F, BLACKWELL D D, RICHARDS M C. Heat flow and temperature-depth curves throughout Alaska: finding regions for future geothermal exploration[J]. Journal of Geophysics and Engineering, 2016, 13(3): 366–378. doi: 10.1088/1742-2132/13/3/366
[11] 邱楠生,魏刚,李翠翠,等. 渤海海域现今地温场分布特征[J]. 石油与天然气地质,2009,30(4):412–419. doi: 10.3321/j.issn:0253-9985.2009.04.004 QIU Nansheng, WEI Gang, LI Cuicui, et al. Distribution features of current geothermal field in the Bohai Sea waters[J]. Oil & Gas Geology, 2009, 30(4): 412–419. doi: 10.3321/j.issn:0253-9985.2009.04.004
[12] 张鸿阳. 渤海湾盆地清丰地区热储温度的变化规律研究[D]. 北京:中国地质大学(北京),2021. ZHANG Hongyang. Study on the variation of heat storage temperature in Bohai Bay Basin[D]. Beijing: China University of Geosciences(Beijing), 2021.
[13] 王良书,刘绍文,肖卫勇,等. 渤海盆地大地热流分布特征[J]. 科学通报,2002,47(2):151–155. doi: 10.3321/j.issn:0023-074X.2002.02.017 WANG Liangshu, LIU Shaowen, XIAO Weiyong, et al. Distribution characteristics of terrestrial heat flow in the Bohai Basin[J]. Chinese Science Bulletin, 2002, 47(2): 151–155. doi: 10.3321/j.issn:0023-074X.2002.02.017
[14] 涂诗棋,左银辉,周勇水,等. 东濮凹陷现今地温场及地热资源潜力[J]. 断块油气田,2023,30(1):100–106. TU Shiqi, ZUO Yinhui, ZHOU Yongshui, et al. Present geothermal field and geothermal resource potential of the Dongpu Sag[J]. Fault-Block Oil & Gas Field, 2023, 30(1): 100–106.
[15] 施亦做,王社教,肖红平,等. 基于三维地质建模的松辽盆地北部地温场模拟[J]. 天然气工业,2022,42(4):46–53. doi: 10.3787/j.issn.1000-0976.2022.04.004 SHI Yizuo, WANG Shejiao, XIAO Hongping, et al. 3D GeoModeller-based simulation of the geothermal field in the northern Songliao Basin[J]. Natural Gas Industry, 2022, 42(4): 46–53. doi: 10.3787/j.issn.1000-0976.2022.04.004
[16] CALCAGNO P, BAUJARD C, GUILLOU−FROTTIER L, et al. Estimation of the deep geothermal potential within the Tertiary Limagne Basin (French Massif Central): an integrated 3D geological and thermal approach[J]. Geothermics, 2014, 51: 496–508. doi: 10.1016/j.geothermics.2014.02.002
[17] 程小桂. 基于机器学习的地温场预测研究:以塔里木台盆区为例[D]. 北京:中国石油大学(北京),2023. CHENG Xiaogui. Research on geothermal field prediction based on machine learning: a case in the central area of the Tarim Basin[D]. Beijing: China University of Petroleum(Beijing), 2023.
[18] 罗昕. 塔里木盆地岩石热物性预测和现今地温场研究[D]. 北京:中国石油大学(北京),2021. LUO Xin. Prediction of rock thermophysical properties and current geothermal field research in Tarim Basin[D]. Beijing: China University of Petroleum(Beijing), 2021.
[19] BAI Lige, LI Jing, ZENG Zhaofa, et al. Prediction of terrestrial heat flow in Songliao Basin based on deep neural network[J]. Earth and Space Science, 2023, 10(12): e2023EA003186. doi: 10.1029/2023EA003186
[20] 柯婷婷,黄少鹏,许威,等. 关中盆地沣西地区地热对井采灌开发模式的数值模拟[J]. 第四纪研究,2019,39(5):1252–1263. doi: 10.11928/j.issn.1001-7410.2019.05.17 KE Tingting, HUANG Shaopeng, XU Wei, et al. Numerical modeling of doublet well system for extracting heat from sandstone geothermal reservoir: a case study of Fengxi area, the Guanzhong Basin, NW China[J]. Quaternary Sciences, 2019, 39(5): 1252–1263. doi: 10.11928/j.issn.1001-7410.2019.05.17
[21] 张进平,杜建国,何铁柱. 基于Tough2软件的深部地温场模拟及影响因素分析:以苏北褶皱构造区为例[J]. 城市地质,2014,9(增刊1):35–40. ZHANG Jinping, DU Jianguo, HE Tiezhu. Simulation of geothermal field and influence factors in northern Jiangsu fold tectonic area based on Tough2 software[J]. Urban Geology, 2014, 9(supplement 1): 35–40.
[22] 陈金龙,罗文行,窦斌,等. 涿鹿盆地三维多裂隙地质模型地温场数值模拟[J]. 地质科技通报,2021,40(3):22–33. CHEN Jinlong, LUO Wenxing, DOU Bin, et al. Numerical simulation of geothermal field in a three-dimensional multi-fractured geological model of Zhuolu Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 22–33.
[23] 韩昀. 渤海湾盆地目标区块地热资源评价研究[D]. 北京:中国地质大学(北京),2021. HAN Yun. Evaluation of geothermal resources in target block of Bohai Bay Basin[D]. Beijing: China University of Geosciences(Beijing), 2021.
[24] 王志刚,胡志兴,李宽,等. 干热岩钻完井的挑战及技术展望[J]. 科技导报,2019,37(19):58–65. WANG Zhigang, HU Zhixing, LI Kuan, et al. Challenges and technical prospects of dry-hot rock drilling and completion[J]. Science & Technology Review, 2019, 37(19): 58–65.
[25] 高明洋,张凯,周琴,等. 高温硬地层钻进中PDC钻头切削齿磨损研究[J]. 探矿工程(岩土钻掘工程),2018,45(10):185–189. GAO Mingyang, ZHANG Kai, ZHOU Qin, et al. Wear of PDC cutters in high temperature hard formation drilling[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2018, 45(10): 185–189.
[26] 李忠慧,赵毅,楼一珊,等. 海洋深水井钻井过程中井筒温度的变化规律[J]. 天然气工业,2019,39(10):88–94. doi: 10.3787/j.issn.1000-0976.2019.10.011 LI Zhonghui, ZHAO Yi, LOU Yishan, et al. Changing laws of wellbore temperature during offshore deepwater well drilling[J]. Natural Gas Industry, 2019, 39(10): 88–94. doi: 10.3787/j.issn.1000-0976.2019.10.011
[27] 陈浩,邦润,蔡灿,等. 深井高温岩石破岩机理及生热分析[J]. 石油机械,2021,49(1):1–10. CHEN Hao, BANG Run, CAI Can, et al. Rock breaking mechanisms and heat generation analysis on high temperature rocks in deep wells[J]. China Petroleum Machinery, 2021, 49(1): 1–10.
[28] 伍开松,柯行,龙巾帼. 热−结构耦合PDC单齿破岩温升规律研究[J]. 石油机械,2013,41(4):24–26. doi: 10.3969/j.issn.1001-4578.2013.04.006 WU Kaisong, KE Xing, LONG Jinguo. Research on the temperature rise law for single tooth rock-breaking of thermal structure coupling PDC bit[J]. China Petroleum Machinery, 2013, 41(4): 24–26. doi: 10.3969/j.issn.1001-4578.2013.04.006
[29] 吴海东. 高温条件下金刚石钻头钻进实验研究[D]. 长春:吉林大学,2017. WU Haidong. Experimental research on diamond bit drilling under high temperature[D]. Changchun: Jilin University, 2017.
[30] 朱永宜,王稳石,张恒春,等. 我国大陆科学钻探工程实施概况及其取心钻进技术体系[J]. 地质学报,2018,92(10):1971–1984. doi: 10.3969/j.issn.0001-5717.2018.10.001 ZHU Yongyi, WANG Wenshi, ZHANG Hengchun, et al. Implementation overview of Chinese Continental Scientific Drilling (CCSD) project and technical systems of core boring[J]. Acta Geologica Sinica, 2018, 92(10): 1971–1984. doi: 10.3969/j.issn.0001-5717.2018.10.001
[31] ZHU Yongyi, WANG Wenshi, WU Xiaoming, et al. Main technical innovations of Songke Well No.2 Drilling Project[J]. China Geology, 2018, 1(2): 187–201. doi: 10.31035/cg2018031
[32] 曹龙龙,张恒春,王稳石,等. 准噶尔盆地玛页1井长筒取心技术[J]. 钻探工程,2022,49(5):94–99. doi: 10.12143/j.ztgc.2022.05.013 CAO Longlong, ZHANG Hengchun, WANG Wenshi, et al. Long barrel coring technology for Well Maye-1 in Junggar Basin[J]. Drilling Engineering, 2022, 49(5): 94–99. doi: 10.12143/j.ztgc.2022.05.013
[33] 康克利,李明,李浪. 中长筒取心技术在玛页1井的应用[J]. 新疆石油天然气,2020,16(1):38–40. doi: 10.3969/j.issn.1673-2677.2020.01.010 KANG Keli, LI Ming, LI Lang. Application of medium-long tube coring technology in Well Maye-1[J]. Xinjiang Oil & Gas, 2020, 16(1): 38–40. doi: 10.3969/j.issn.1673-2677.2020.01.010
[34] 王建宁,艾中华,刘畅,等. 亚极地海域SW5井快速建井技术[J]. 长江大学学报(自然科学版),2015,12(8):47–50. WANG Jianning, AI Zhonghua, LIU Chang, et al. Rapid well construction technology in Well SW5, subpolar waters[J]. Journal of Yangtze University (Natural Science Edition), 2015, 12(8): 47–50.
[35] 耿旭占. 半潜式平台长筒取心的应用[J]. 石化技术,2020,27(11):52–53. doi: 10.3969/j.issn.1006-0235.2020.11.020 GENG Xuzhan. Application of long barrel coring for semi submersible platform[J]. Petrochemical Industry Technology, 2020, 27(11): 52–53. doi: 10.3969/j.issn.1006-0235.2020.11.020
[36] 张伟. 德国大陆深钻计划实施情况介绍[J]. 国外地质勘探技术,1998(3):44–46. ZHANG Wei. Introduction to the implementation of the German Continental Deep Drilling Program[J]. Foreign Geoexploration Technology, 1998(3): 44–46.
[37] 张金昌. 科学超深井钻探技术方案预研究专题成果报告:第3分册[M]. 北京:地质出版社,2016:4-10. ZHANG Jinchang. Pre-research report on scientific ultra-deep well drilling technology solutions (volume 3)[M]. Beijing: Geological Publishing House, 2016: 4-10.
[38] 苏义脑. 油气直井防斜打快技术:理论与实践[M]. 北京:石油工业出版社,2003:62-67. SU Yinao. Deviation control and fast drilling technology for vertical wells in oil and gas: theory and practice[M]. Beijing: Petroleum Industry Press, 2003: 62-67.
[39] 张绍槐. 深井、超深井和复杂结构井垂直钻井技术[J]. 石油钻探技术,2005,33(5):11–15. doi: 10.3969/j.issn.1001-0890.2005.05.003 ZHANG Shaohuai. Vertical drilling technologies in deep, ultra-deep, and complex structure wells[J]. Petroleum Drilling Techniques, 2005, 33(5): 11–15. doi: 10.3969/j.issn.1001-0890.2005.05.003
[40] LUBINSKI A, WOODS H B. Factors affecting the angle of inclination and dog-legging in rotary bore holes[J]. Drilling and Production Practice, 1953: 222-250.
[41] HOCH R. A review of the crooked-hole problem and an analysis of packed bottom-hole drill-collar assemblies[J]. Drilling and Production Practice, 1962: 27-37.
[42] BRAM K, DRAXLER J, HIRSCHMANN G, et al. The KTB borehole-Germany's superdeep telescope into the earth crust[J]. Oilfield Review, 1995, 7: 4–22.
[43] REICH M, OESTERBERG M, MONTES H, et al. Straight down to success: performance review of a vertical drilling system[R]. SPE 84451, 2003.
[44] SUGIURA J, BOWLER A, LOWDON R. Improved continuous azimuth and inclination measurement by use of a rotary-steerable system enhances downhole-steering automation and kickoff capabilities near vertical[J]. SPE Drilling & Completion, 2014, 29(2): 226–235.
[45] COMEAUX B, GIBB J, KIRKHOPE K, et al. New automatic vertical drilling system for high temperature, harsh environment and performance drilling applications[R]. OMC 2007-052, 2007.
[46] JONES S, FEDDEMA C, CASTRO J, et al. Fully mechanical vertical drilling system delivers RSS performance in vertical drilling applications while providing an economical alternative to conventional rotary steerable systems set-up for vertical hold mode[R]. SPE 178788, 2016.
[47] 韩来聚,倪红坚,赵金海,等. 机械式自动垂直钻井工具的研制[J]. 石油学报,2008,29(5):766–768. doi: 10.3321/j.issn:0253-2697.2008.05.025 HAN Laiju, NI Hongjian, ZHAO Jinhai, et al. Development of mechanical tool for automatic vertical drilling[J]. Acta Petrolei Sinica, 2008, 29(5): 766–768. doi: 10.3321/j.issn:0253-2697.2008.05.025
[48] 苏义脑,季细星. 井眼轨道控制系统控制原理分析[J]. 石油学报,1996,17(4):109–113. doi: 10.3321/j.issn:0253-2697.1996.04.016 SU Yinao, JI Xixing. Control principle analysis of bit trajectory control systems[J]. Acta Petrolei Sinica, 1996, 17(4): 109–113. doi: 10.3321/j.issn:0253-2697.1996.04.016
[49] 李松林. 井下闭环自动旋转导向控制工具的初步研究与自动垂直钻井工具的设计[D]. 北京:中国石油勘探开发研究院,2000. LI Songlin. Preliminary research on downhole closed-loop automatic rotary steering control tool and design of automatic vertical drilling tool[D]. Beijing: PetroChina Research Institute of Petroleum Exploration and Development, 2000.
[50] 刘白雁,陈新元,谢剑刚,等. 自动垂直钻井工具的理论与技术研究[J]. 武汉科技大学学报(自然科学版),2008,31(1):6–10. LIU Baiyan, CHEN Xinyuan, XIE Jiangang, et al. Theoretical and technical investigation of automatic vertical drilling tools[J]. Journal of Wuhan University of Science and Technology(Natural Science Edition), 2008, 31(1): 6–10.
[51] 艾才云,穆总结,宋朝晖,等. Φ311 mm垂直钻井系统的工作原理及现场应用[J]. 钻采工艺,2010,33(3):40–42. AI Caiyun, MU Zongjie, SONG Zhaohui, et al. Working principle and field application of Φ311 mm automatic vertical drilling system[J]. Drilling & Production Technology, 2010, 33(3): 40–42.
[52] 汝大军,杨士明,乔金中,等. BH-VDT5000垂直钻井系统在克深207井的应用[J]. 钻采工艺,2013,36(1):107–109. doi: 10.3969/J.ISSN.1006-768X.2013.01.33 RU Dajun, YANG Shiming, QIAO Jinzhong, et al. Application of BH-VDT5000 vertical drilling system in Keshen 207 Well[J]. Drilling & Production Technology, 2013, 36(1): 107–109. doi: 10.3969/J.ISSN.1006-768X.2013.01.33
[53] 程福旺,王赞,孙雷,等. 渤海油田深层井壁稳定研究与应用[J]. 中国石油和化工标准与质量,2024,44(16):138–140. doi: 10.3969/j.issn.1673-4076.2024.16.047 CHENG Fuwang, WANG Zan, SUN Lei, et al. Research and application of deep wellbore stability in Bohai Oilfield[J]. China Petroleum and Chemical Standard and Quality, 2024, 44(16): 138–140. doi: 10.3969/j.issn.1673-4076.2024.16.047
[54] 李磊,杨进,刘宝生,等. 渤海渤中区域深井井身结构优化[J]. 石油钻采工艺,2020,42(5):569–572. LI Lei, YANG Jin, LIU Baosheng, et al. Casing program optimization of deep wells in the central Bohai Area[J]. Oil Drilling & Production Technology, 2020, 42(5): 569–572.
[55] 孙金声,杨景斌,白英睿,等. 深层超深层钻井液技术研究进展与展望[J]. 石油勘探与开发,2024,51(4):889–898. doi: 10.11698/PED.20240128 SUN Jinsheng, YANG Jingbin, BAI Yingrui, et al. Research progress and development of deep and ultra-deep drilling fluid technology[J]. Petroleum Exploration and Development, 2024, 51(4): 889–898. doi: 10.11698/PED.20240128
[56] 郭浩,易鹏昌,张立权,等. 北部湾深层深井油基钻井液研究及现场应用[J]. 化学工程师,2024,38(1):42–46. GUO Hao, YI Pengchang, ZHANG Liquan, et al. Research and field application of oil-based drilling fluid in deep well of Beibu Gulf[J]. Chemical Engineer, 2024, 38(1): 42–46.
[57] 倪晓骁,蒋官澄,王建华,等. 油基钻井液用憎液性纳米封堵剂[J]. 钻井液与完井液,2021,38(3):298–304. NI Xiaoxiao, JIANG Guancheng, WANG Jianhua, et al. Study on a lyophobic nanophase plugging agent for oil base muds[J]. Drilling Fluid & Completion Fluid, 2021, 38(3): 298–304.
-
期刊类型引用(1)
1. 侯冰,廖志豪,张庄,罗加伦,琚宜文,王文. 水力压裂物理模拟方法的数字化和智能化发展综述. 辽宁石油化工大学学报. 2025(02): 1-12 . 百度学术
其他类型引用(0)