Permeability Evaluation from Logs in Tight Sandstone Reservoirs Based on Classification and Optimization of Flow Units
-
摘要:
致密砂岩储层非均质性强,常规测井解释模型没有考虑储层纵向上渗流特征的差异性,导致渗透率解释精度低。为此,采用储层流动单元描述致密砂岩储层非均质特征,建立了具有不同渗流单元的渗透率解释模型,以提高渗透率预测精度。首先,结合岩心实验流动单元指数频数分布与累计分布频率,建立流动单元分类标准,并优选流动单元分类数目,分类构建渗透率模型;然后,引入深度神经网络,结合常规测井和核磁测井数据,预测流动单元指数;最后,基于分类渗透率解释模型,计算储层渗透率。珠江口盆地惠州凹陷古近系恩平组应用该渗透率计算方法进行计算,流动单元分为5类最佳,测井尺度的流动单元识别分类与沉积相具有较好的一致性,渗透率计算准确度相比核磁模型明显提高。研究结果为深层致密砂岩储层渗透率评价提供了新的计算方法。
Abstract:Due to the strong heterogeneity of tight sandstone reservoirs, conventional log interpretation models usually overlook the difference in the longitudinal flow properties of the reservoirs, leading to low accuracy in the calculation and interpretation of permeability. Therefore, the flow units (FUs) of reservoirs were utilized to describe and quantify the heterogeneity characteristics of tight sandstone reservoirs. Permeability interpretation models of different FUs were constructed to improve the accuracy of permeability predictions. First, the FU classification standard was established by combining the frequency distribution and cumulative distribution probability of the experimental FU indicator (IFZ) from cores, and the optimal classification number of FUs was selected to establish permeability models in different categories. Additionally, deep neural networks (DNN) were introduced to predict IFZ by combining conventional logging and nuclear magnetic resonance (NMR) logging data. Finally, reservoir permeability was calculated based on the permeability interpretation models in different categories. This permeability calculation method was applied to the Paleogene Enping Formation in Huizhou Sag, Pearl River Mouth Basin, and five FU categories were selected for optimal classification. The identification and classification of FUs at the log scale were in good agreement with sedimentary facies, and the accuracy of permeability calculation was significantly improved compared to the NMR model. The research results provide a new calculation method for evaluating the permeability of deep tight sandstone reservoirs.
-
Keywords:
- tight sandstone /
- permeability evaluation /
- flow unit /
- deep learning
-
干热岩(hot dry rock,HDR)是指埋藏于地下3~10 km、温度150~650 ℃、不含或微含不流动流体的高温岩体[1]。保守估计,地壳3~10 km深处干热岩所蕴含的能量相当于全球所有石油、天然气和煤炭所蕴藏能量的30倍[2]。在干热岩概念基础上发展而来的增强型地热系统(enhanced geothermal systems,EGS),是指通过水力压裂等工程手段,在地下深部低渗透性干热岩体中形成人工热储,进而长期、经济地采出相当数量地热能的人造水热系统[3]。
共和盆地目前是我国干热岩勘查与开发的试验田,位于昆仑—秦岭纬向构造带与河西系构造复合部位,是在新近纪初形成的断陷盆地,其北侧是青海南山断褶隆起带,南侧是河卡山—贵南南山断褶隆起带,西为鄂拉山断褶隆起带,东为瓦里贡山断褶隆起带。根据区域地质构造分析、地热地质调查和地球物理(航磁、地震)解译等的结果,在共和盆地恰卜恰岩体内钻了5口井深为2 927.00~4 200.00 m的干热岩勘查井。GR1井位于青海省共和县恰卜恰镇恰卜恰河谷内,是目前国内完钻温度最高的一口干热岩井,井底温度236 ℃[4-8]。
为了构建青海共和盆地干热岩井的流动和传热通道,掌握该地区干热岩井水力压裂后的裂缝走向和裂缝参数,利用地面测斜仪监测了X1井3个压裂阶段的裂缝,采集了倾斜角度的变化信号,并利用数据解释软件反演求取了裂缝参数,获得了每一压裂阶段的裂缝方位、裂缝长度与裂缝复杂性,可以为优化压裂设计、评价压裂效果以及干热岩注入–采出井的井位部署提供依据。
1. 地面测斜仪测试原理
通过水力压裂将地层压开,使之形成1条一定宽度的裂缝。压裂裂缝引起的岩石变形场向各个方向辐射,引起地面及地下地层变形。地面变形为微米级,几乎不可测量,但变形场的变形梯度(倾斜场)是比较容易测量的。因此,可以在井下或压裂井井口周围布设一组测斜仪来测量由于压裂引起岩石变形而导致的地面倾斜角度,再用地球物理反演[9]方法反演出压裂裂缝参数。图1所示为测斜仪监测垂直裂缝的原理,显示了从地面测斜仪和邻井井下测斜仪观察到的水力裂缝造成的地层变形。
在监测压裂裂缝之前,基于相关的施工参数,可以提前计算出压裂裂缝产生过程中所造成的地面最大倾斜角,计算公式为:
Tmax (1) 式中:Tmax为最大倾斜角,μrad;V为裂缝内流体的体积,m3;D为射孔垂直深度,m。
X1井目的层埋深约3 650.00 m,利用式(1)计算其每个压裂阶段(300 m3液体)形成垂直裂缝能够造成的地面最大倾斜角约为1 000 nrad,而测斜仪传感器的测量精度为1 nrad,完全满足监测的需求。
利用地面测斜仪监测压裂裂缝的方法在国内外得到了广泛应用[10-14],但都是用于监测含油气资源沉积岩储层的压裂裂缝,笔者首次将其应用于监测干热岩压裂裂缝。
2. X1井目的层花岗岩储层特征
X1井压裂层段对应井深3 493.60~3 705.00 m,岩性主要为黑云母二长花岗岩,岩层致密且天然裂隙较发育。为进一步了解储层特性,分别进行了岩石力学和地应力试验,获取了岩石力学和地应力参数。
对共和盆地X1井所取储层岩心进行了岩石力学试验,获得了不同围压下的杨氏模量和泊松比:单轴下的杨氏模量为31.00~33.00 GPa,泊松比为0.216~0.225;围压下的杨氏模量为47.29~54.14 GPa,泊松比为0.319~0.343。40 MPa围压下的泊松比大于0.300,杨氏模量高于40 GPa。
X1井地层的各向异性较强,统计各向异性方向平均为53.5°,可知地层的各向异性方向主要为北东东—南西西,即最大主应力方向,与地面考察结果基本一致。通过地应力测试,获得X1井井深3 226.00 m处的最小水平主应力为68.94 MPa,最大水平主应力为77.67 MPa,折算到压裂段中部深度最小水平主应力为77.0 MPa,最大水平主应力为86.7 MPa,最大与最小水平主应力差为9.7 MPa。
受构造变形影响,X1井部分井段岩心裂隙发育,出现了完整岩体与裂隙岩体互层现象。X1井部分井段还有断层发育迹象,如取自井深2 250.00 m处的岩心呈角砾状,无充填物,厚34.10 m,推测为一断层。X1井井深3 000.00 m以深地应力较高,部分岩心严重饼化(见图2)。
3. X1井压裂裂缝监测方案设计
根据目的层深度和施工规模确定直井地面测斜仪的分布位置和数量。根据X1井目的层的实际井深(3 493.60~3 705.00 m)和压裂施工参数,确定该井压裂需布置42支测斜仪。结合设计方案和现场地表实际条件,在X1井井口3 km范围内布置了42支测斜仪(见图3)。图3中间是X1井的井口,黑旗代表分布在每一个测点的测斜仪,黑点是现场布置测斜仪实际走过的轨迹。每一个测点都是通过GPS定位确定的。
4. X1井裂缝监测结果及分析
在干热岩增强型地热(EGS)开发过程中,国际上一般采用对井进行取热和发电,换热井主要依据地热井热储裂缝的方位、缝长等部署。相比于微地震监测等其他监测方法,地面测斜仪能够明确给出裂缝的方位,据此可进行换热井井眼轨道设计。
青海共和X1井的压裂经历了吸水性测试、小型压裂测试、变排量注入压裂和胶液扩缝3个阶段,前2个阶段的压裂液为清水,第3个阶段的压裂液是胶液和清水。图4、图5和图6分别为3个压裂阶段测斜仪监测到的结果(左图均为矢量场图,右图均为裂缝放大图;图中绿色部分是压裂形成的垂直裂缝,红色部分是压裂形成的水平裂缝,对应了压裂过程中产生的复杂裂缝)。从图4—图6可看出,X1井3个压裂阶段形成垂直裂缝的方位都是北偏东方向,与最大水平主应力的方位一致,但每次方位略有不同,具体跟地质条件和压裂工艺参数有关。
表1为X1井3个阶段形成垂直裂缝的主要参数及监测结果。由于X1井的目的层天然裂隙比较发育,且前2个阶段的压裂液是清水,不但黏度低(1 mPa·s)而且排量低(0.5~1.5 m3/min),导致进入垂直裂缝压裂液的占比相对较低,分别为48%和53%(见表1),其余的清水都进入了被激活的水平天然裂隙,形成了一定程度的复杂裂缝。第3阶段采用了较高黏度的压裂液(胶液+清水),而且排量较高(2.0 m3/min),进入垂直裂缝压裂液的占比最高(58%),说明采用高黏胶液(20 mPa·s)进行初期造缝,造缝效果最好,所以此时的垂直裂缝缝方位最可靠,为北偏东22.32°,同时此时缝高也最高,达到64.00 m。
表 1 X1井3个压裂阶段垂直裂缝的监测结果Table 1. Mapping results of vertical fractures during three fracturing stages of Well X1压裂
阶段裂缝
方位裂缝
倾角半缝长/
m缝高/
m压裂液
体积/m3液体进入
垂直缝
比例,%第1阶段 NE28.73° SE29.38° 81.00 51.00 163.50 48 第2阶段 NE43.50° SE60.00° 76.20 51.00 190.61 53 第3阶段 NE22.32° SE60.00° 76.20 64.00 330.10 58 青海共和X1井也利用地面微地震监测了裂缝,前2个阶段没有明确监测到裂缝的方位,第3阶段监测到裂缝方位为北偏东28.50°;根据地面测斜仪监测数据解释第3阶段裂缝方位为北偏东22.32°,两者相差6.18°。该结果从侧面证明了利用测斜仪可以监测干热岩压裂裂缝方位。
5. 结 论
1)利用地面测斜仪成功监测了青海共和干热岩X1井的压裂裂缝,监测结果表明,可以利用地面测斜仪监测干热岩井压裂裂缝的方位,为干热岩换热井井位部署和压裂设计方案优化提供依据。
2)X1井3个压裂阶段形成垂直裂缝的方位都是北偏东方向,但方位略有不同,当排量和压裂液黏度都较大时,垂直裂缝方位为北偏东22.32°。该结果与地面微地震解释结果基本相同。
3)X1井目的层天然裂隙发育,对形成适度的复杂热储裂缝非常有利。X1井3个压裂阶段都形成了既包含垂直裂缝,又包含被注入压裂液激活水平天然裂隙的复杂裂缝。
-
表 1 5类流动单元类型的储层特征
Table 1 Reservoir properties of flow units with five types
流动单元分类 沉积微相 流动单元指数/μm 岩性 孔隙度,% 渗透率/mD Ⅰ类 分流间湾 IFZ≤0.45 泥质粉砂岩、中–细砂岩为主 5.4~15.0(9.4) 0.01~0.96(0.08) Ⅱ类 河口坝 0.45 < IFZ≤1.42 中–细砂,少量粗砂和含砾中砂 5.0~16.1(9.8) 0.07~11.00 (0.75) Ⅲ类 河口坝, 分流河道 1.42< IFZ≤3.00 中–细砂为主,含砾粗砂次之 6.2~16.2(10.7) 0.56~48.00 (6.76) Ⅳ类 分流河道 3.00< IFZ≤8.00 中–粗砂为主,含砾粗砂次之 7.0~15.2(12.1) 2.9~379.0(70.0) Ⅴ类 分流河道 IFZ >8.00 粗砂和含砾粗砂 9.0~17.6(14.2) 101~ 3611 (758)注:孔隙度及渗透率数值后()内数值为平均值。 -
[1] 贾爱林,位云生,郭智,等. 中国致密砂岩气开发现状与前景展望[J]. 天然气工业,2022,42(1):83–92. doi: 10.3787/j.issn.1000-0976.2022.01.008 JIA Ailin, WEI Yunsheng, GUO Zhi, et al. Development status and prospect of tight sandstone gas in China[J]. Natural Gas Industry, 2022, 42(1): 83–92. doi: 10.3787/j.issn.1000-0976.2022.01.008
[2] 季汉生,张立宽,张立强,等. 基于自发渗吸接触角分布的致密砂岩油储层混合润湿性测量和表征[J]. 东北石油大学学报,2023,47(2):117–124. doi: 10.3969/j.issn.2095-4107.2023.02.010 JI Hansheng, ZHANG Likuan, ZHANG Liqiang, et al. Measurement and characterization of mixed wettability for tight sandstone based on spontaneous imbibition contact angle distribution[J]. Journal of Northeast Petroleum University, 2023, 47(2): 117–124. doi: 10.3969/j.issn.2095-4107.2023.02.010
[3] 李登华,刘卓亚,张国生,等. 中美致密油成藏条件、分布特征和开发现状对比与启示[J]. 天然气地球科学,2017,28(7):1126–1138. LI Denghua, LIU Zhuoya, ZHANG Guosheng, et al. Comparison and revelation of tight oil accumulation conditions, distribution characteristics and development status between China and U. S.[J]. Natural Gas Geoscience, 2017, 28(7): 1126–1138.
[4] 路萍,王浩辰,高春云,等. 致密砂岩储层渗透率预测技术研究进展[J]. 地球物理学进展,2022,37(6):2428–2438. doi: 10.6038/pg2022FF0236 LU Ping, WANG Haochen, GAO Chunyun, et al. Research progress of permeability prediction technology for tight sandstone reservoirs[J]. Progress in Geophysics, 2022, 37(6): 2428–2438. doi: 10.6038/pg2022FF0236
[5] 王谦,谭茂金,石玉江,等. 径向基函数神经网络法致密砂岩储层相对渗透率预测与含水率计算[J]. 石油地球物理勘探,2020,55(4):864–872. WANG Qian, TAN Maojin, SHI Yujiang, et al. Prediction of relative permeability and calculation of water cut of tight sandstone reservoir based on radial basis function neural network[J]. Oil Geophysical Prospecting, 2020, 55(4): 864–872.
[6] 时磊,王璞,刘俊州,等. 致密砂岩储层物性参数预测方法研究[J]. 石油物探,2020,59(1):98–107. doi: 10.3969/j.issn.1000-1441.2020.01.011 SHI Lei, WANG Pu, LIU Junzhou, et al. Physical properties prediction for tight sandstone reservoirs[J]. Geophysical Prospecting for Petroleum, 2020, 59(1): 98–107. doi: 10.3969/j.issn.1000-1441.2020.01.011
[7] 张冲,张占松,张超谟. 基于等效岩石组分理论的渗透率解释模型[J]. 测井技术,2014,38(6):690–694. doi: 10.3969/j.issn.1004-1338.2014.06.010 ZHANG Chong, ZHANG Zhansong, ZHANG Chaomo. A permeability interpretation model based on equivalent rock elements theory[J]. Well Logging Technology, 2014, 38(6): 690–694. doi: 10.3969/j.issn.1004-1338.2014.06.010
[8] KOZENY J. Ueber kapillare leitung des Wassers in Boden[J]. Royal Academy of Sciencc Vienna Proc, 1927, 136(2a): 271–306.
[9] CARMAN P C. Permeability of saturated sands, soils and clays[J]. The Journal of Agricultural Science, 1939, 29(2): 262–273. doi: 10.1017/S0021859600051789
[10] TIMUR A. An investigation of permeability, porosity, & residual water saturation relationships for sandstone reservoirs[J]. The Log Analyst, 1968, 9(4): 8–17.
[11] KENYON W E, DAY P I, STRALEY C, et al. A three-part study of NMR longitudinal relaxation properties of water-saturated sandstones[J]. SPE Formation Evaluation, 1988, 3(3): 622–636. doi: 10.2118/15643-PA
[12] 李荣强,高莹,杨永飞,等. 基于CT扫描的岩心压敏效应实验研究[J]. 石油钻探技术,2015,43(5):37–43. LI Rongqiang, GAO Ying, YANG Yongfei, et al. Experimental study on the pressure sensitive effects of cores based on CT scanning[J]. Petroleum Drilling Techniques, 2015, 43(5): 37–43.
[13] 王清辉,朱明,冯进,等. 基于渗透率合成技术的砂岩油藏产能预测方法[J]. 石油钻探技术,2021,49(6):105–112. WANG Qinghui, ZHU Ming, FENG Jin, et al. A method for predicting productivity of sandstone reservoirs based on permeability synthesis technology[J]. Petroleum Drilling Techniques, 2021, 49(6): 105–112.
[14] 邓浩阳. 高孔低渗碳酸盐岩储层孔隙结构及物性表征方法研究[D]. 成都:西南石油大学,2018. DENG Haoyang. The evaluation method of pore structure and physical property in carbonate rock reservoir with high porosity and low permeability[D]. Chengdu: Southwest Petroleum University, 2018.
[15] 周雪晴,张占松,张超谟,等. 基于粗糙集:随机森林算法的复杂岩性识别[J]. 大庆石油地质与开发,2017,36(6):127–133. ZHOU Xueqing, ZHANG Zhansong, ZHANG Chaomo, et al. Complex lithologic identification based on rough set-random forest algorism[J]. Petroleum Geology & Oilfield Development in Daqing, 2017, 36(6): 127–133.
[16] 郭建宏,张占松,张超谟,等. 用地球物理测井资料预测煤层气含量:基于斜率关联度—随机森林方法的工作案例[J]. 物探与化探,2021,45(1):18–28. GUO Jianhong, ZHANG Zhansong, ZHANG Chaomo, et al. The exploration of predicting CBM content by geophysical logging data: a case study based on slope correlation random forest method[J]. Geophysical and Geochemical Exploration, 2021, 45(1): 18–28.
[17] 闫星宇,顾汉明,肖逸飞,等. XGBoost算法在致密砂岩气储层测井解释中的应用[J]. 石油地球物理勘探,2019,54(2):447–455. YAN Xingyu, GU Hanming, XIAO Yifei, et al. XGBoost algorithm applied in the interpretation of tight-sand gas reservoir on well logging data[J]. Oil Geophysical Prospecting, 2019, 54(2): 447–455.
[18] 王远雄. 基于测井的改进TCN-Attention网络在储层孔隙度、渗透率预测中的应用[D]. 大庆:东北石油大学,2022. WANG Yuanxiong. Application of improved TCN-attention network based on logging in reservoir porosity and permeability prediction[D]. Daqing: Northeast Petroleum University, 2022.
[19] 杨旺旺,张冲,杨梦琼,等. 基于长短期记忆循环神经网络的伊拉克H油田碳酸盐岩储层渗透率测井评价[J]. 大庆石油地质与开发,2022,41(1):126–133. YANG Wangwang, ZHANG Chong, YANG Mengqiong, et al. Permeability logging evaluation of carbonate reservoirs in Oilfield H of Iraq based on long short-term memory recurrent neural network[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(1): 126–133.
[20] AMRAEI H, FALAHAT R. Improved ST-FZI method for permeability estimation to include the impact of porosity type and lithology[J]. Journal of Petroleum Exploration and Production Technology, 2021, 11(1): 109–115. doi: 10.1007/s13202-020-01061-6
[21] 高颖,高楚桥,赵彬,等. 基于储层分类计算东海低渗致密储层渗透率[J]. 断块油气田,2019,26(3):309–313. GAO Ying, GAO Chuqiao, ZHAO Bin, et al. Permeability calculation based on reservoir classification for low permeability tight reservoirs in East China Sea[J]. Fault-Block Oil & Gas Field, 2019, 26(3): 309–313.
[22] HAMD-ALLAH S M, NOOR B M, WATTEN A R. Permeability prediction for Nahr-Umr reservoir/Subba field by using FZI method[J]. Journal of Engineering, 2016, 22(9): 160–171. doi: 10.31026/j.eng.2016.09.10
[23] KORONCZ P, VIZHÁNYÓ Z, FARKAS M P, et al. Experimental rock characterisation of Upper Pannonian sandstones from Szentes Geothermal Field, Hungary[J]. Energies, 2022, 15(23): 9136. doi: 10.3390/en15239136
[24] 赵辉,齐怀彦,王凯,等. 致密砂岩油藏测井响应特征及有利区评价[J]. 特种油气藏,2023,30(5):35–41. doi: 10.3969/j.issn.1006-6535.2023.05.005 ZHAO Hui, QI Huaiyan, WANG Kai, et al. Characteristics of well logging response and evaluation of favorable zones in tight sandstone reservoirs[J]. Special Oil & Gas Reservoirs, 2023, 30(5): 35–41. doi: 10.3969/j.issn.1006-6535.2023.05.005
[25] 董春梅,林承焰,赵海朋,等. 基于流动单元的测井储层参数解释模型[J]. 测井技术,2006,30(5):425–428. doi: 10.3969/j.issn.1004-1338.2006.05.011 DONG Chunmei, LIN Chengyan, ZHAO Haipeng, et al. Model of well logging reservoir parameters interpretation based on flow units[J]. Well Logging Technology, 2006, 30(5): 425–428. doi: 10.3969/j.issn.1004-1338.2006.05.011
[26] 葛祥,温丹妮,叶泰然,等. 川西气田雷四段白云岩储层流动单元测井评价方法[J]. 石油钻探技术,2023,51(6):120–127. doi: 10.11911/syztjs.2023049 GE Xiang, WEN Danni, YE Tairan, et al. Logging evaluation method of flow units in a dolomite reservoir in the 4th member of the Leikoupo Formation in western Sichuan Gas Field[J]. Petroleum Drilling Techniques, 2023, 51(6): 120–127. doi: 10.11911/syztjs.2023049
[27] 李熙盛. 强非均质性储层构型表征与流动单元智能分类评价[J]. 海洋地质前沿,2024,40(9):28–37. LI Xisheng. Characterization of strongly heterogeneous reservoir architecture and intelligent classification evaluation of flow units[J]. Marine Geology Frontiers, 2024, 40(9): 28–37.
[28] 王猛,刘志杰,杨玉卿,等. 基于区域测井大数据和实验资料的储层流动单元渗透率建模方法[J]. 地球物理学进展,2021,36(1):274–280. doi: 10.6038/pg2021EE0199 WANG Meng, LIU Zhijie, YANG Yuqing, et al. Permeability calculation in reservoir flow unit based on regional logging big data and experimental data[J]. Progress in Geophysics, 2021, 36(1): 274–280. doi: 10.6038/pg2021EE0199
[29] ALIZADEH N, RAHMATI N, NAJAFI A, et al. A novel approach by integrating the core derived FZI and well logging data into artificial neural network model for improved permeability prediction in a heterogeneous gas reservoir[J]. Journal of Petroleum Science and Engineering, 2022, 214: 110573. doi: 10.1016/j.petrol.2022.110573
[30] 阿斯顿•张,李沐,扎卡里•C. 立顿,等. 动手学深度学习[M]. 北京:人民邮电出版社,2019:136-150. ZHANG A, LI Mu, LIPTON Z C, et al. Dive into deep learning[M]. Beijing: Posts & Telecom Press, 2019: 136-150.
-
期刊类型引用(7)
1. 考佳玮,杨康,谭鹏,陈作. 干热岩储层裂缝扩展及采热一体化数值模型. 吉林大学学报(地球科学版). 2025(02): 575-586 . 百度学术
2. 邹剑,兰夕堂,高尚,符杨洋,张丽平,代磊阳. 示踪剂裂缝监测技术在气藏水平井压裂中的应用. 精细与专用化学品. 2024(02): 20-23 . 百度学术
3. 刘汉青,胡才博,赵桂萍. 增强地热系统停止运行后温度恢复过程的数值模拟. 中国科学院大学学报. 2024(02): 222-230 . 百度学术
4. 陈作,赵乐坤,卫然,刘星. 深层地热热储改造技术进展与发展建议. 石油钻探技术. 2024(06): 10-15 . 本站查看
5. 刘汉青,胡才博,赵桂萍,石耀霖. 利用热-孔隙流体耦合有限元数值模拟研究干热岩开发温度下降过程——以青海共和盆地恰卜恰地区干热岩开发为例. 地球物理学报. 2023(07): 2887-2902 . 百度学术
6. 王旭,刘得军,吴世伟,李洋,翟颖. 基于大地电磁监测方法的水力裂缝响应模拟. 石油钻探技术. 2023(06): 115-119 . 本站查看
7. 张德龙,郭强,杨鹏,卢彤,吴烁,翁炜,刘宝林. 地热井花岗岩地层钻进提速技术研究与应用进展. 地质与勘探. 2022(05): 1082-1090 . 百度学术
其他类型引用(4)