Design and Application of High-Flow-Rate Shunt Screen for Horizontal Wells
-
摘要:
水平井砾石充填过程中因砂桥形成导致桥堵,为提高旁通通道的过流截面利用率和工作可靠性,基于旁通分流砾石充填技术原理,研制大排量旁通筛管,优化旁通通道结构,将传统旁通筛管中的充填管替换为喷砂环,形成“喷砂环-输送管”结构。通过地面物模试验和现场试验验证,相比传统型旁通筛管,大排量旁通筛管在输送管过流截面扩大47.1%,沿程摩阻压降减少53.8%,在充填速率上较传统技术提高180%,应用井投产后360天内累积产油量提高31.2%。结果表明,大排量旁通筛管具有优异的旁通通道输送能力,可实现快速循环充填,有效减轻储层污染,减少砾石与地层砂的掺混,可为提高单井产量提供一种技术手段。
Abstract:To tackle the challenge of sand bridge-induced blockages during gravel packing in horizontal wells and to boost packing efficiency, a novel high-flow-rate shunt screen has been devised. Grounded in the principles of shunt gravel packing technology, this screen innovatively replaces the traditional packing tube with a nozzle ring within the shunt channel, establishing a "nozzle ring–transport tube" configuration. This structural modification markedly enhances the utilization rate and reliability of the shunt channel's flow cross-section. Relative to conventional shunt screens, the high-flow-rate shunt screen achieves a 47.1% increase in the transport tube's flow cross-section and a 53.8% reduction in the channel's frictional pressure drop. Laboratory modeling tests and field trials have confirmed that the high-flow-rate shunt screen delivers an 180% improvement in packing rate and a 31.2% boost in cumulative oil production over the initial 360 days of well production. These findings highlight the screen's superior slurry transport capabilities, which facilitate rapid circulation and packing, effectively minimize reservoir contamination and gravel–formation sand mixing, and ultimately lead to a substantial increase in single-well productivity.
-
Keywords:
- horizontal well /
- gravel pack /
- shunt tube /
- flow section /
- packing rate
-
-
表 1 现场试验评价结果
Table 1 Results of evaluation on field test
井号 充填阶段 排量/
(m3·min−1)携砂比,% 最高泵压/
MPa携砂液
返出率,%漏失速率/
(m3·min−1)阶段充填量/m3 充填速率/
m3/min施工时长/
min充填效率,% ZB221-P8 阶段1 1 6~8 10 88.1 0.11 4.21 0.075 152 98.7 阶段2 0.8 5 15 82.8 0.131 3.19 0.042 ZB221-P2 阶段1 1 6~8 10 90.3 0.107 4.83 0.072 331 97 阶段2 0.2~0.4 5 15 50.9 0.124 3.3 0.011 ZB221-P3 阶段1 1 6~8 10 87.5 0.113 4.41 0.069 289 95.9 阶段2 0.2~0.4 5 15 45.8 0.136 2.68 0.018 ZB221-P5 阶段1 1 6~8 10 91 0.106 4.09 0.078 274 95.5 阶段2 0.2~0.4 5 15 53 0.122 2.54 0.017 ZB221-P6 阶段1 1 6~8 10 88.4 0.108 4.57 0.069 286 96.4 阶段2 0.2~0.4 5 15 47.8 0.125 2.76 0.014 表 2 ZB221区块5口井生产动态追踪数据(开井360d)
Table 2 Production performance of 5 gravel packing wells in Block ZB221 (360 well-opening days)
井号 累积产油
量/×104m3产油年递
减率,%年平均
含水率,%含水率上升
幅度/百分点ZB221-P8 3.21 16.3 63.2 10.2 ZB221-P2 2.53 17.5 60.1 8.4 ZB221-P3 2.85 15.5 55.4 7.9 ZB221-P5 1.95 14.8 58.9 6.3 ZB221-P6 2.46 16.9 62.8 10.4 -
[1] 周泓宇,万小进,吴绍伟,等. 水平井控水砾石充填防砂技术研究[J]. 石油钻探技术,2021,49(1):101–106. doi: 10.11911/syztjs.2020138 ZHOU Hongyu, WAN Xiaojin, WU Shaowei, et al. Study on the sand control technique for gravel packing with water control for horizontal wells[J]. Petroleum Drilling Techniques, 2021, 49(1): 101–106. doi: 10.11911/syztjs.2020138
[2] 董星亮. 新型预充填筛管在渤海QHD32-6油田的应用[J]. 石油钻采工艺,2020,42(4):414–416. DONG Xingliang. Application of a new type of pre-packed screen in the Bohai QHD32-6 Oilfield[J]. Oil Drilling & Production Technology, 2020, 42(4): 414–416.
[3] OYEINTONBRA I, ADEYEBA A, MOSES U, et al. Design of high-density fluid gravel pack for Assa north lower completions[R]. IPTC 24828, 2025.
[4] 王力智,董长银,何海峰,等. 非均相聚合物驱油藏防砂井近井挡砂介质堵塞机理实验研究[J]. 石油钻探技术,2020,48(5):92–99. doi: 10.11911/syztjs.2020118 WANG Lizhi, DONG Changyin, HE Haifeng, et al. An experimental study on the plugging mechanisms of sand-preventing medium in the near-well zone of sand control wells in heterogeneous polymer-flooding reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(5): 92–99. doi: 10.11911/syztjs.2020118
[5] 段友智,艾爽,刘欢乐,等. 形状记忆筛管自充填防砂完井技术[J]. 石油钻探技术,2019,47(5):86–90. DUAN Youzhi, AI Shuang, LIU Huanle, et al. Shape memory screen Self-Packing sand control completion technology[J]. Petroleum Drilling Techniques, 2019, 47(5): 86–90.
[6] PILLAI P, LIN C C, BREGE J, et al. Industry first openhole alternate path gravel pack completion in HPHT environment: Fluid development and case history[R]. SPE 206048, 2021.
[7] DIKSHIT A, KUMAR A, LANGLAIS M, et al. Extending openhole gravel-packing intervals through enhanced shunted screens[J]. SPE Drilling & Completion, 2021, 36(2): 445–458.
[8] CHIN P L, MOSES N, B AHMAD MAHDZAN A A, et al. World longest single-trip multizone cased hole gravel packing with alternate path shunt tubes[R]. IPTC 21324, 2021.
[9] 孟文波,刘书杰,黄熠,等. 海上长水平井旁通筛管砾石充填技术及应用[J]. 中国海上油气,2021,33(6):166–173. doi: 10.11935/j.issn.1673-1506.2021.06.019 MENG Wenbo, LIU Shujie, HUANG Yi, et al. Gravel packing technology of bypass screen and its application in offshore long horizontal wells[J]. China Offshore Oil and Gas, 2021, 33(6): 166–173. doi: 10.11935/j.issn.1673-1506.2021.06.019
[10] 李中. 中国海油“深海一号”大气田钻完井关键技术进展及展望[J]. 石油钻探技术,2023,51(4):88–94. doi: 10.11911/syztjs.2023031 LI Zhong. Progress and prospect of key technologies for drilling and completion of “Deep Sea No. 1” gas field of CNOOC[J]. Petroleum Drilling Techniques, 2023, 51(4): 88–94. doi: 10.11911/syztjs.2023031
[11] JESUS Y, GONCALVES B P, CASTRO V Y, et al. Reducing and optimizing well cost and time by implementing a technical collaborative partnership in Roncador, an ultra deepwater brownfield in Brazil[R]. SPE 223753, 2025.
[12] WHALEY K, TAHIROV T, KHEDR S, et al. A critical review of shunt tube deployed open hole gravel pack completions pumped with no positive surface pressure[R]. SPE 210121, 2022.
[13] OMER F, RUDIC A, SONG Lijun, et al. Multiphase fluid erosion modeling for rapid development of shunt tube isolation valve for openhole gravel pack[R]. SPE 214568, 2023.
[14] MALBREL C A, CREWS J B. Use of ultra lightweight particulates in multi-path gravel packing operations: US 20180258743 A1[P]. 2018-09-13.
[15] YEH C S, BARRY M D, HECKER M T, et al. Crossover joint for connecting eccentric flow paths to concentric flow paths: US 9797226 B2[P]. 2017-10-24.
[16] AGGARWAL V, GUPTA V, NARAYAN S, et al. Extended-reach open-hole gravel pack completion under multiple complexities[R]. SPE 185902, 2017.
[17] SLADIC J, BRASSEAUX J, MCNAMEE S, et al. High pressure 2×2 screen development for extended-reach, open-hole shunted gravel-pack wells[R]. IPTC 22995, 2023.
[18] 司连收,李自安,张健. 砾石充填防砂对稠油井产能影响研究[J]. 西南石油大学学报(自然科学版),2013,35(5):135–140. SI Lianshou, LI Zian, ZHANG Jian. Influence of gravel packing sand control on the productivity of heavy oil well[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2013, 35(5): 135–140.
[19] WIJAYA R, MURYANTO B, RUSHATMANTO M, et al. Decrypting causes of sand control failure and improving productivity of multi zone single trip gravel pack[P]. IPTC 18416, 2015.
[20] KHAN J A, CHEN Yanhong. Mechanism and oil-water pressure drop of unique autonomous inflow control device under different water cut: Water control performance of AICD in large bottom water reservoir in South Sudan[R]. IPTC 24839, 2025.
[21] TRUJILLO H, TENGONO J A, Rubiano J, et al. How to constantly deliver 100% packing efficiency in openhole gravel packs: A field study in Colombia[R]. SPE 146447, 2011.
-
期刊类型引用(3)
1. 张小佳,刘文红,申昭熙,钱征华,张应红,周海洋. 基于RFID技术的石油钻具管理系统研制. 石油钻探技术. 2022(06): 107-111 . 本站查看
2. 崔龙兵,胡亮,席步祥,阮臣良,程光明,赵建军. 射频识别随钻扩眼器的研制与应用. 钻采工艺. 2020(04): 71-74+10 . 百度学术
3. 高胜,滕向松,张丽巍,刘跃宝,范立华. 井下无线射频识别系统作业环境影响因素分析. 石油机械. 2019(01): 86-92 . 百度学术
其他类型引用(2)