Study on Evolution Law of Fracture Toughness of Ultra-Deep Laminated Shale
-
摘要:
为深入探究超深页岩储层中水力裂缝纵向穿层机制,针对高应力及层理性质对页岩断裂特性的影响进行了系统性分析。首先,利用三轴压缩试验获取了页岩力学参数;其次,采用颗粒离散元法构建了带围压的半圆板页岩三点弯曲数值模型,模拟了页岩在不同工况下的断裂过程。数值模拟结果表明,围压增大显著提升了页岩的断裂韧性,且层理面角度和密度对断裂韧性的影响随着围压增大而增强:相同围压下,断裂韧性随着层理面角度增加而降低,随着层理面密度增加呈现小幅差异,表明层理面密度对断裂韧性的强化作用优于层理面角度。基于此,拟合了断裂韧性与围压、层理面角度和密度的定量关系,并构建了不同围压及层理面性质对页岩断裂韧性的量化图版。研究结果揭示了高应力条件下超深页岩储层层理性质对断裂特性的复杂影响,为优化水力压裂方案、有效控制水力裂缝穿层行为提供了理论依据。
Abstract:To explore the longitudinal hydraulic fracture propagation mechanism in ultra-deep shale reservoirs, the influence of high stress and bedding properties on shale fracture characteristics was systematically analyzed. Initially, shale mechanical parameters were obtained through triaxial compression experiments. Subsequently, a three-point bending numerical model of a semi-circular shale plate with confining pressure was constructed using the particle discrete element method to simulate the shale fracture process under various conditions. The numerical simulation results demonstrate that increasing the confining pressure significantly enhances shale fracture toughness, and the influence of bedding plane angle and density on fracture toughness is amplified with increasing confining pressure. At the same confining pressure, fracture toughness decreases with an increase in bedding plane angle and exhibits a minor variation with an increase in bedding plane density, indicating that bedding plane density has a greater strengthening effect on fracture toughness than bedding plane angle. Based on these findings, the quantitative relationship of fracture toughness with confining pressure, bedding plane angle, and density was fitted, and a quantitative chart illustrating the impact of varying confining pressures and bedding plane properties on shale fracture toughness was developed. The results reveal the complex influence of bedding properties on fracture characteristics under high stress conditions in ultra-deep shale reservoirs, providing a theoretical basis for optimizing hydraulic fracturing schemes and effectively controlling hydraulic fracture propagation behavior.
-
Keywords:
- ultra-deep shale /
- high stress /
- bedding plane /
- fracture toughness /
- particle flow method
-
-
表 1 数值模型细观胶结参数取值
Table 1 Meso-cementation parameters of numerical model
页岩 颗粒密度/
(kg·m−3)颗粒有效
模量/GPa胶结有效
模量/GPa胶结刚度比 胶结拉伸
强度/MPa胶结内聚力/MPa 胶结摩擦角/(°) 基质 2 640 5.0 19.20 1.35 117.6 70.4 25 层理面 2 640 5.0 3.84 1.35 23.5 14.1 14 表 2 页岩数值模型的断裂韧性计算结果
Table 2 Fracture toughness calculation results of numerical model for shale
试样编号 Fmax/kN K′ 试样编号 Fmax/kN K′ C1−D1−A1 257.80 0.326 C2−D1−A1 194.49 0.180 C1−D2−A1 192.39 0.175 C2−D2−A1 205.05 0.204 C1−D3−A1 167.62 0.118 C2−D3−A1 248.98 0.305 C1−D4−A1 214.57 0.226 C2−D4−A1 241.07 0.287 C1−D1−A2 186.42 0.161 C2−D1−A2 174.28 0.133 C1−D2−A2 147.85 0.072 C2−D2−A2 194.47 0.180 C1−D3−A2 144.99 0.065 C2−D3−A2 186.92 0.162 C1−D4−A2 169.39 0.122 C2−D4−A2 176.83 0.139 -
[1] MAHANTA B, TRIPATHY A, VISHAL V, et al. Effects of strain rate on fracture toughness and energy release rate of gas shales[J]. Engineering Geology, 2017, 218: 39–49. doi: 10.1016/j.enggeo.2016.12.008
[2] ATKINSON C, SMELSER R E, SANCHEZ J. Combined mode fracture via the cracked Brazilian disk test[J]. International Journal of Fracture, 1982, 18(4): 279–291.
[3] 吕有厂. 层理性页岩断裂韧性的加载速率效应试验研究[J]. 岩石力学与工程学报,2018,37(6):1359–1370. LYU Youchang. Effect of bedding plane direction on fracture toughness of shale under different loading rates[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1359–1370.
[4] 陈勉,金衍,袁长友. 围压条件下岩石断裂韧性的实验研究[J]. 力学与实践,2001,23(4):32–35. doi: 10.3969/j.issn.1000-0879.2001.04.010 CHEN Mian, JIN Yan, YUAN Changyou. Study on the experiment for fracture toughness under confining pressure[J]. Mechanics in Engineering, 2001, 23(4): 32–35. doi: 10.3969/j.issn.1000-0879.2001.04.010
[5] 董京楠,金衍,陈勉,等. 页岩Ⅰ型断裂韧性测试及跨尺度裂缝表征研究[J]. 地下空间与工程学报,2019,15(增刊1):205–210. DONG Jingnan, JIN Yan, CHEN Mian, et al. Study on shale fracture toughness and micro-characterization of mode Ⅰ crack using DCB specimen and SEM method[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(supplement 1): 205–210.
[6] 余海棠,丁乙,刘艳梅,等. 考虑水化损伤作用的页岩动态自吸模型[J]. 石油钻探技术,2023,51(5):139–148. doi: 10.11911/syztjs.2023054 YU Haitang, DING Yi, LIU Yanmei, et al. A dynamical spontaneous imbibition model for shale considering hydration damage[J]. Petroleum Drilling Techniques, 2023, 51(5): 139–148. doi: 10.11911/syztjs.2023054
[7] 金衍,薄克浩,张亚洲,等. 深层硬脆性泥页岩井壁稳定力学化学耦合研究进展与思考[J]. 石油钻探技术,2023,51(4):159–169. doi: 10.11911/syztjs.2023024 JIN Yan, BO Kehao, ZHANG Yazhou, et al. Advancements and considerations of chemo-mechanical coupling for wellbore stability in deep hard brittle shale[J]. Petroleum Drilling Techniques, 2023, 51(4): 159–169. doi: 10.11911/syztjs.2023024
[8] 谭鹏,陈朝伟,赵庆,等. 页岩气多簇压裂断层活化机理与控制方法[J]. 石油钻探技术,2024,52(6):107–116. doi: 10.11911/syztjs.2024120 TAN Peng, CHEN Zhaowei, ZHAO Qing, et al. Mechanism and control method of fault activation by multi-cluster fracturing of shale gas[J]. Petroleum Drilling Techniques, 2024, 52(6): 107–116. doi: 10.11911/syztjs.2024120
[9] 刘彧轩,杨兴贵,郭建春. 纵向无限级多薄层储层裂缝穿层扩展规律[J]. 断块油气田,2024,31(6):1076–1082. LIU Yuxuan, YANG Xinggui, GUO Jianchun. Fracture through-layer propagation law in longitudinal infinite multiple thin layer reservoirs[J]. Fault-Block Oil & Gas Field, 2024, 31(6): 1076–1082.
[10] 田建超,张艺,李凝,等. 页岩油水力压裂裂缝特征场地级数值模拟优化方法[J]. 石油钻采工艺,2024,46(3):326–335. TIAN Jianchao, ZHANG Yi, LI Ning, et al. Numerical simulation optimization method for site-level hydraulic fracturing fracture characteristics in shale oil[J]. Oil Drilling & Production Technology, 2024, 46(3): 326–335.
[11] 赵彦昕,许文俊,王雷,等. 陆相页岩储层水力裂缝穿层扩展规律[J]. 石油钻采工艺,2023,45(1):76–84. ZHAO Yanxin, XU Wenjun, WANG Lei, et al. Through-layer propagation laws of hydraulic fractures in continental shale reservoirs[J]. Oil Drilling & Production Technology, 2023, 45(1): 76–84.
[12] 熊健,吴俊,刘向君,等. 陆相页岩储层地质力学特性及对压裂效果的影响[J]. 西南石油大学学报(自然科学版),2023,45(5):69–80. XIONG Jian, WU Jun, LIU Xiangjun, et al. The geomechanical characteristics of the continental shale reservoirs and their influence on the fracturing effect[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2023, 45(5): 69–80.
[13] 张景轩,范晓,陈波,等. 硬脆性页岩断裂韧性二维数值模拟研究[J]. 复杂油气藏,2019,12(1):73–80. ZHANG Jingxuan, FAN Xiao, CHEN Bo, et al. Two-dimensional numerical simulation of fracture toughness of hard brittle shale[J]. Complex Hydrocarbon Reservoirs, 2019, 12(1): 73–80.
[14] XU Yuan, DAI Feng, ZHAO Tao, et al. Fracture toughness determination of cracked chevron notched Brazilian disc rock specimen via Griffith energy criterion incorporating realistic fracture profiles[J]. Rock Mechanics and Rock Engineering, 2016, 49(8): 3083–3093. doi: 10.1007/s00603-016-0978-0
[15] YIN Tubing, ZHANG Shuaishua, LI Xibing, et al. A numerical estimate method of dynamic fracture initiation toughness of rock under high temperature[J]. Engineering Fracture Mechanics, 2018, 204: 87–102. doi: 10.1016/j.engfracmech.2018.09.034
[16] KURUPPU M D, OBARA Y, AYATOLLAHI M R, et al. ISRM-suggested method for determining the mode I static fracture toughness using semi-circular bend specimen[J]. Rock Mechanics and Rock Engineering, 2014, 47(1): 267–274. doi: 10.1007/s00603-013-0422-7
[17] 张昊天,周文,曹茜,等. 基于应力—应变模型的脆塑性测井评价[J]. 测井技术,2018,42(3):331–337. ZHANG Haotian, ZHOU Wen, CAO Qian, et al. Log evaluation method of the brittle-plastic parameters based on stress-strain model[J]. Well Logging Technology, 2018, 42(3): 331–337.
[18] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47–65.
[19] 李庆辉,陈勉,金衍,等. 页岩气储层岩石力学特性及脆性评价[J]. 石油钻探技术,2012,40(4):17–22. doi: 10.3969/j.issn.1001-0890.2012.04.004 LI Qinghui, CHEN Mian, JIN Yan, et al. Rock mechanical properties and brittleness evaluation of shale gas reservoir[J]. Petroleum Drilling Techniques, 2012, 40(4): 17–22. doi: 10.3969/j.issn.1001-0890.2012.04.004
-
期刊类型引用(18)
1. 钟锋,侯博,孙欢,朱明明,刘振,王步宽,李金爽. 苏里格区域抗高温滤失型纤维堵漏技术研究与应用. 石油化工应用. 2024(05): 79-85 . 百度学术
2. 郭明红,文飞,常春来,谭春,崔节磊,钟新新. 高滤失固结堵漏技术在足203H5平台的应用. 石油地质与工程. 2024(03): 108-112 . 百度学术
3. 王立锋. 查302井分级承压固结堵漏技术. 钻井液与完井液. 2024(05): 617-621 . 百度学术
4. 欧翔,谭凯,周楚翔. 深层钻井堵漏材料的研究现状与发展思考. 材料导报. 2024(S2): 615-620 . 百度学术
5. 刘金华. 顺北油气田二叠系火成岩漏失分析及堵漏技术. 钻探工程. 2023(02): 64-70 . 百度学术
6. 李天乐,庞少聪,赵洛,杨超岚,安玉秀. 近十年纳微米堵漏剂研究进展. 应用化工. 2023(07): 2107-2111 . 百度学术
7. 彭力,计磊,邱正松,臧晓宇,张现斌. 新型抗高温凝胶堵漏剂的制备与评价. 能源化工. 2023(05): 64-69 . 百度学术
8. 杜昊,李丽华,马诚,杨超,王晨,张宏. 架桥封堵-热致固结高温堵漏体系研究. 辽宁石油化工大学学报. 2023(06): 17-21 . 百度学术
9. 王文刚,胡大梁,欧彪,房舟,刘磊. 井研–犍为地区缝洞型复杂地层钻井关键技术. 石油钻探技术. 2022(02): 58-63 . 本站查看
10. 王兆永. 超高温高密度防漏堵漏水泥浆技术. 石油化工应用. 2022(12): 38-41+47 . 百度学术
11. 方俊伟,贾晓斌,刘文堂,乐明. ZYSD高失水固结堵漏技术在顺北5-9井中的应用. 钻井液与完井液. 2021(01): 74-78 . 百度学术
12. 赵洪波,单文军,朱迪斯,岳伟民,何远信. 裂缝性地层漏失机理及堵漏材料新进展. 油田化学. 2021(04): 740-746 . 百度学术
13. 杨仲涵,罗鸣,陈江华,许发宾,徐靖. 莺歌海盆地超高温高压井挤水泥承压堵漏技术. 石油钻探技术. 2020(03): 47-51 . 本站查看
14. 赵福豪,黄维安. 钻井液防漏堵漏材料研究进展. 复杂油气藏. 2020(04): 96-100 . 百度学术
15. 邹春,兰凯,王爱宽,刘香峰,孔华. 涪陵页岩气井水平段一趟钻技术实践与认识. 内蒙古石油化工. 2019(06): 64-67 . 百度学术
16. 樊好福. 页岩气钻完井配套技术集成研究与应用. 探矿工程(岩土钻掘工程). 2019(08): 15-22 . 百度学术
17. 王涛,赵兵,曲占庆,郭天魁,罗攀登,王晓之. 塔河老区井周弱势通道暂堵酸压技术. 断块油气田. 2019(06): 794-799 . 百度学术
18. 韩成,黄凯文,罗鸣,刘贤玉,邓文彪. 南海莺琼盆地高温高压井堵漏技术. 石油钻探技术. 2019(06): 15-20 . 本站查看
其他类型引用(6)