复合冲击载荷抑制PDC钻头破岩粘滑振动的试验研究

Experimental Study on the Suppression of Stick-Slip Vibration of PDC Bits during Rock Breaking by Composite Impact Load

  • 摘要: 深井超深井钻井过程中,PDC钻头的粘滑振动是导致钻头非正常磨损的主要原因之一。为探索复合冲击载荷对PDC钻头粘滑振动的影响机制,利用冲击破岩试验装置研究了PDC钻头破岩过程中粘滑振动的发展规律;在此基础上,通过引入复合冲击载荷,分析了轴扭复合冲击载荷对PDC钻头破岩过程中粘滑振动的影响规律。研究发现:固定驱动转速条件下,随着送钻速度增快,PDC钻头的粘滑振动会明显增强;当平均钻压为20.12 kN时,粘滑比为1.31,钻头出现了间断停滞现象;粘滑振动的主频为冲击破岩试验装置扭转加载模块的一阶固有频率,复合冲击可以明显降低PDC钻头的粘滑现象,表现为主频处对应的转速显著降低;在试验参数范围内,频率50和100 Hz的复合冲击对粘滑振动的抑制效果最为明显。研究结果可为抑制PDC钻头破岩粘滑振动和研制复合冲击破岩工具提供指导。

     

    Abstract: The stick-slip vibration of PDC bits is one of the main factors leading to abnormal wear of the bit during deep and ultra-deep well drilling. In order to explore the influence mechanism of the composite impact load on the stick-slip vibration of PDC bits, the development law of the stick-slip vibration during the rock breaking process of PDC bits was studied using the impact rock breaking test device. On this basis, the influence of the axial and torsional composite impact load on the stick-slip vibration of PDC bits during rock breaking was analyzed by introducing the composite impact load. The research results show that at a fixed driving rotation speed, the stick-slip vibration of PDC bits will demonstrate an apparent increase as the drilling speed increases. When the average weight on bit (WOB) is 20.12 kN, and the stick-slip ratio is 1.31, with intermittent bit rotation stagnation. The main frequency of the stick-slip vibration is the first-order natural frequency of the torsional loading module of the impact rock breaking test device. The composite impact can significantly reduce the slip-slip phenomenon of PDC bits during rock breaking, which is represented by the significant reduction of the rotation speed amplitude at the main frequency, and the composite impacts of 50 Hz and 100 Hz have the most obvious suppression on stick-slip vibration with the test parameters. The research results can provide guidance for the suppression of stick-slip vibration of PDC bits during rock breaking and the development of composite impact rock breaking tools.

     

/

返回文章
返回