复合冲击载荷抑制PDC钻头破岩粘滑振动的试验研究

张恒, 袁光杰, 倪红坚, 杨恒林, 付利, 王元

张恒,袁光杰,倪红坚,等. 复合冲击载荷抑制PDC钻头破岩粘滑振动的试验研究[J]. 石油钻探技术,2025,53(2):69−75. DOI: 10.11911/syztjs.2025007
引用本文: 张恒,袁光杰,倪红坚,等. 复合冲击载荷抑制PDC钻头破岩粘滑振动的试验研究[J]. 石油钻探技术,2025,53(2):69−75. DOI: 10.11911/syztjs.2025007
ZHANG Heng, YUAN Guangjie, NI Hongjian, et al. Experimental study on the suppression of stick-slip vibration of PDC bits during rock breaking by composite impact load [J]. Petroleum Drilling Techniques, 2025, 53(2):69−75. DOI: 10.11911/syztjs.2025007
Citation: ZHANG Heng, YUAN Guangjie, NI Hongjian, et al. Experimental study on the suppression of stick-slip vibration of PDC bits during rock breaking by composite impact load [J]. Petroleum Drilling Techniques, 2025, 53(2):69−75. DOI: 10.11911/syztjs.2025007

复合冲击载荷抑制PDC钻头破岩粘滑振动的试验研究

基金项目: 中国石油天然气集团有限公司前瞻性基础性研究项目“复杂油气钻完井基础理论与新技术新方法研究”(编号:2024DJ100),中国石油青年科技专项计划“底部钻具组合(BHA)振动状态智能识别及减振方法研究”(编号:2024DQ03117)联合资助。
详细信息
    作者简介:

    张恒(1992—),男,山东济宁人,2015年毕业于中国石油大学(华东)石油工程专业,2022年获中国石油大学(华东)油气井工程专业博士学位,工程师,主要从事非常规油气钻井工艺及提速技术研究。E-mail:zhhengdr@cnpc.com.cn

  • 中图分类号: TE921.1

Experimental Study on the Suppression of Stick-Slip Vibration of PDC Bits during Rock Breaking by Composite Impact Load

  • 摘要:

    深井超深井钻井过程中,PDC钻头的粘滑振动是导致钻头非正常磨损的主要原因之一。为探索复合冲击载荷对PDC钻头粘滑振动的影响机制,利用冲击破岩试验装置研究了PDC钻头破岩过程中粘滑振动的发展规律;在此基础上,通过引入复合冲击载荷,分析了轴扭复合冲击载荷对PDC钻头破岩过程中粘滑振动的影响规律。研究发现:固定驱动转速条件下,随着送钻速度增快,PDC钻头的粘滑振动会明显增强;当平均钻压为20.12 kN时,粘滑比为1.31,钻头出现了间断停滞现象;粘滑振动的主频为冲击破岩试验装置扭转加载模块的一阶固有频率,复合冲击可以明显降低PDC钻头的粘滑现象,表现为主频处对应的转速显著降低;在试验参数范围内,频率50和100 Hz的复合冲击对粘滑振动的抑制效果最为明显。研究结果可为抑制PDC钻头破岩粘滑振动和研制复合冲击破岩工具提供指导。

    Abstract:

    The stick-slip vibration of PDC bits is one of the main factors leading to abnormal wear of the bit during deep and ultra-deep well drilling. In order to explore the influence mechanism of the composite impact load on the stick-slip vibration of PDC bits, the development law of the stick-slip vibration during the rock breaking process of PDC bits was studied using the impact rock breaking test device. On this basis, the influence of the axial and torsional composite impact load on the stick-slip vibration of PDC bits during rock breaking was analyzed by introducing the composite impact load. The research results show that at a fixed driving rotation speed, the stick-slip vibration of PDC bits will demonstrate an apparent increase as the drilling speed increases. When the average weight on bit (WOB) is 20.12 kN, and the stick-slip ratio is 1.31, with intermittent bit rotation stagnation. The main frequency of the stick-slip vibration is the first-order natural frequency of the torsional loading module of the impact rock breaking test device. The composite impact can significantly reduce the slip-slip phenomenon of PDC bits during rock breaking, which is represented by the significant reduction of the rotation speed amplitude at the main frequency, and the composite impacts of 50 Hz and 100 Hz have the most obvious suppression on stick-slip vibration with the test parameters. The research results can provide guidance for the suppression of stick-slip vibration of PDC bits during rock breaking and the development of composite impact rock breaking tools.

  • 图  1   PDC钻头冲击破岩试验装置

    1.伺服电机;2.升降机;3.主机架;4.升降丝杠;5.提升机架;6.激振电机;7.激振电机固定架;8.振动装置;9.扭转惯性配重;10.链轮;11.配重悬挂架;12.支撑台;13.配重钻铤;14.岩石和钻头;15.底座;16.换向器;17.扭转弹性杆;18.减速机;19.旋转驱动电机

    Figure  1.   PDC bit impact rock breaking test device

    图  2   破岩扭矩和钻压传感器的装配简图

    Figure  2.   Assembly of torque sensor and WOB sensor for rock breaking

    图  3   PDC钻头冲击破岩试验装置的冲击模块

    Figure  3.   Impact module of impact rock breaking test device with PDC bit

    图  4   试验用花岗岩的单轴压缩应力−应变曲线

    Figure  4.   Uniaxial compressive stress–strain curve of granite for test

    图  5   破岩试验用钻头

    Figure  5.   Bit in the rock breaking test

    图  6   不同送钻参数下钻头转速和破岩扭矩曲线

    Figure  6.   Curves of bit rotation speed and rock breaking torque under different drilling parameters

    图  7   不同送钻参数下的转速幅频分析结果

    Figure  7.   Amplitude-frequency analysis of rotation speeds under different drilling parameters

    图  8   不同频率轴扭复合冲击钻进时钻头的转速

    Figure  8.   Bit rotation speeds during drilling under composite impact drilling with different frequency

    图  9   不同频率轴扭复合冲击钻进时钻头转速的幅频特性

    Figure  9.   Amplitude-frequency characteristics of bit rotation speed under composite impact drilling with different frequency

    表  1   不同送钻参数下的实际钻进参数

    Table  1   Actual drilling parameters under different drilling parameters

    ωa ωr/(r·min−1 平均钻压/kN 平均扭矩/(N·m) 平均钻速/(mm·s−1
    10 20 9.29 102.29 0.14
    20 20 12.73 164.19 0.28
    30 20 15.16 221.37 0.42
    40 20 20.12 260.78 0.63
    下载: 导出CSV

    表  2   冲击参数设置与实钻参数

    Table  2   Impact parameter settings and actual drilling parameters

    试验
    编号
    fai幅值/
    kN
    Mti幅值/
    (N·m)
    冲击
    频率/Hz
    平均
    钻压/kN
    平均扭
    矩/(N·m)
    平均钻速/
    (mm·s−1
    无冲击 0 0 0 15.16 221.37 0.42
    CC−1 1.5 22 50 13.87 165.42 0.42
    CC−2 1.5 22 100 14.03 182.26 0.43
    CC−3 1.5 22 150 14.16 182.68 0.44
    CC−4 1.5 22 200 14.11 186.08 0.42
    下载: 导出CSV
  • [1] 杨金华,郭晓霞. PDC钻头技术发展现状与展望[J]. 石油科技论坛,2018,37(1):33–38. doi: 10.3969/j.issn.1002-302x.2018.01.008

    YANG Jinhua, GUO Xiaoxia. The present status and outlook of PDC bit technology[J]. Petroleum Science and Technology Forum, 2018, 37(1): 33–38. doi: 10.3969/j.issn.1002-302x.2018.01.008

    [2] 贺振国,石李保,李灵樨,等. 基于单齿破岩有限元模拟的黏滑振动机理研究[J]. 石油机械,2021,49(5):17–26.

    HE Zhenguo, SHI Libao, LI Lingxi, et al. Study on the mechanism of stick-slip vibration based on single-cutter rock breaking finite element simulation[J]. China Petroleum Machinery, 2021, 49(5): 17–26.

    [3] 石李保,邹德永,王皓琰,等. PDC切削齿切削深度对PDC钻头黏滑振动影响动态实验[J]. 石油钻采工艺,2021,43(6):750–755.

    SHI Libao, ZOU Deyong, WANG Haoyan, et al. Dynamic experimental on the influence of cutting depth of PDC cutter on stick-slip oscillation of PDC bit[J]. Oil Drilling & Production Technology, 2021, 43(6): 750–755.

    [4] 姜寅令,张周,张强,等. 柔性钻柱扭转振动及控制研究[J]. 石油矿场机械,2024,53(4):18–27. doi: 10.3969/j.issn.1001-3482.2024.04.003

    JIANG Yinling, ZHANG Zhou, ZHANG Qiang, et al. Research on coupled vibration and control of flexible drill strings[J]. Oil Field Equipment, 2024, 53(4): 18–27. doi: 10.3969/j.issn.1001-3482.2024.04.003

    [5] 张佳伟,孟昭,纪国栋,等. PDC钻头破岩效率及稳定性室内试验研究[J]. 石油机械,2020,48(12):35–43.

    ZHANG Jiawei, MENG Zhao, JI Guodong, et al. Laboratory experimental study on rock breaking efficiency and stability of PDC bit[J]. China Petroleum Machinery, 2020, 48(12): 35–43.

    [6]

    ZHU Xiaohua, TANG Liping, YANG Qiming. A literature review of approaches for stick-slip vibration suppression in oilwell drillstring[J]. Advances in Mechanical Engineering, 2014, 6: 967952. doi: 10.1155/2014/967952

    [7]

    GHASEMLOONIA A, GEOFF RIDEOUT D, BUTT S D. A review of drillstring vibration modeling and suppression methods[J]. Journal of Petroleum Science and Engineering, 2015, 131: 150–164. doi: 10.1016/j.petrol.2015.04.030

    [8] 董广建,陈平,邓元洲,等. 钻柱振动与冲击抑制技术研究现状[J]. 西南石油大学学报(自然科学版),2016,38(3):121–134.

    DONG Guangjian, CHEN Ping, DENG Yuanzhou, et al. A literature review of researches on drillstring vibration suppression[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2016, 38(3): 121–134.

    [9] 闫炎,管志川,玄令超,等. 复合冲击条件下PDC钻头破岩效率试验研究[J]. 石油钻探技术,2017,45(6):24–30.

    YAN Yan, GUAN Zhichuan, XUAN Lingchao, et al. Experimental study on rock breaking efficiency with a PDC bit under conditions of composite percussion[J]. Petroleum Drilling Techniques, 2017, 45(6): 24–30.

    [10] 柳贡慧,李玉梅,李军,等. 复合冲击破岩钻井新技术[J]. 石油钻探技术,2016,44(5):10–15.

    LIU Gonghui, LI Yumei, LI Jun, et al. New technology with composite percussion drilling and rock breaking[J]. Petroleum Drilling Techniques, 2016, 44(5): 10–15.

    [11] 何选蓬,程天辉,王学龙,等. 塔里木地区复合冲击器钻井提速应用与实践[J]. 钻采工艺,2018,41(1):107–109. doi: 10.3969/J.ISSN.1006-768X.2018.01.33

    HE Xuanpeng, CHENG Tianhui, WANG Xuelong, et al. Application and practice of ROP enhancement using composite impactor in Tarim area[J]. Drilling & Production Technology, 2018, 41(1): 107–109. doi: 10.3969/J.ISSN.1006-768X.2018.01.33

    [12] 李相勇. 复合冲击钻井工具在深部难钻地层的应用[J]. 西部探矿工程,2019,31(8):70–72. doi: 10.3969/j.issn.1004-5716.2019.08.026

    LI Xiangyong. Application of composite percussion drilling tools in deep difficultly drilling formations[J]. West-China Exploration Engineering, 2019, 31(8): 70–72. doi: 10.3969/j.issn.1004-5716.2019.08.026

    [13] 查春青,柳贡慧,李军,等. 复合冲击钻具的研制及现场试验[J]. 石油钻探技术,2017,45(1):57–61.

    ZHA Chunqing, LIU Gonghui, LI Jun, et al. Development and field application of a compound percussive jet[J]. Petroleum Drilling Techniques, 2017, 45(1): 57–61.

    [14] 刘书斌,倪红坚,张恒. 轴扭复合冲击工具的研制与应用[J]. 石油钻探技术,2020,48(5):69–76. doi: 10.11911/syztjs.2020072

    LIU Shubin, NI Hongjian, ZHANG Heng. Development and applications of a compound axial and torsional impact drilling tool[J]. Petroleum Drilling Techniques, 2020, 48(5): 69–76. doi: 10.11911/syztjs.2020072

    [15] 穆总结,李根生,黄中伟,等. 振动冲击钻井提速技术现状及发展趋势[J]. 石油钻采工艺,2020,42(3):253–260.

    MU Zongjie, LI Gensheng, HUANG Zhongwei, et al. Status and development trend of vibration-impact ROP improvement technologies[J]. Oil Drilling & Production Technology, 2020, 42(3): 253–260.

    [16] 况雨春,张涛,林伟. 小尺度水平井钻柱动力学实验台架研制及应用[J]. 石油钻探技术,2024,52(4):15–23. doi: 10.11911/syztjs.2024066

    KUANG Yuchun, ZHANG Tao, LIN Wei. Fabrication and application of drill string dynamics experiment bench for small-scale horizontal wells[J]. Petroleum Drilling Techniques, 2024, 52(4): 15–23. doi: 10.11911/syztjs.2024066

    [17] 李欣业,高赫远,郭晓强,等. 钻柱振动的主被动控制研究进展与展望[J]. 天然气工业,2024,44(6):98–110. doi: 10.3787/j.issn.1000-0976.2024.06.010

    LI Xinye, GAO Heyuan, GUO Xiaoqiang, et al. Research progress and prospect in active and passive control of drill string vibration[J]. Natural Gas Industry, 2024, 44(6): 98–110. doi: 10.3787/j.issn.1000-0976.2024.06.010

    [18] 黄亮,王国荣,徐靖,等. 水平井完井管柱振动特性实验研究[J]. 西南石油大学学报(自然科学版),2020,42(5):170–178.

    HUANG Liang, WANG Guorong, XU Jing, et al. An experimental study on vibration characteristics of horizontal well completion string[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2020, 42(5): 170–178.

    [19]

    LIU Shubin, NI Hongjian, JIN Yan, et al. Experimental study on drilling efficiency with compound axial and torsional impact load[J]. Journal of Petroleum Science and Engineering, 2022, 219: 111060. doi: 10.1016/j.petrol.2022.111060

    [20]

    ZHANG Heng, NI Hongjian, WANG Zizhen, et al. Discrete element modeling and simulation study on cutting rock behavior under spring-mass-damper system loading[J]. Journal of Petroleum Science and Engineering, 2022, 209: 109872. doi: 10.1016/j.petrol.2021.109872

  • 期刊类型引用(18)

    1. 熊亮,曹海涛,樊浩,钱锋,江朋宇,陈先超. 深层页岩气吸附模型和物质平衡新方法. 科技和产业. 2024(13): 220-225 . 百度学术
    2. 丛奇,陈君青,卢贵武,姜福杰,庞礴,施砍园,杨晓斌,王玉莹,庞宏. 利用分子动力学模拟研究页岩吸附能力的影响因素及微观机理的综述. 中南大学学报(自然科学版). 2022(09): 3474-3489 . 百度学术
    3. 刘香禺,张烈辉,李树新,张介辉,赵玉龙,张芮菡,郭晶晶,唐慧莹,张帆. 考虑页岩多重吸附机制的超临界甲烷等温吸附模型. 石油学报. 2022(10): 1487-1499 . 百度学术
    4. 林海宇,熊健,刘向君. 川南龙马溪组页岩甲烷等温解吸特征研究. 油气藏评价与开发. 2021(01): 56-61 . 百度学术
    5. 李爱芬,韩文成,孙海,ASADULLAH Memon. 考虑多因素的页岩气吸附模型——以川东南五峰组—龙马溪组页岩为例. 煤炭学报. 2021(03): 1003-1013 . 百度学术
    6. 张明杰,刘浩,贾天让,龚泽,杨明鑫. 颗粒煤超临界态甲烷吸附相密度特征研究. 煤田地质与勘探. 2021(05): 105-113 . 百度学术
    7. 孟瑞艳. 影响页岩等温吸附测试曲线异常的因素分析. 中国煤炭地质. 2020(07): 4-8+39 . 百度学术
    8. 庞小婷,陈国辉,许晨曦,佟茂胜,倪彬午,包汉勇. 涪陵地区五峰组-龙马溪组页岩吸附-游离气定量评价及相互转化. 石油与天然气地质. 2019(06): 1247-1258 . 百度学术
    9. 陈志礼,宁正福,杜华明,黄亮,叶洪涛,张文通. 基于改进BP神经网络的页岩吸附量预测模型. 断块油气田. 2018(02): 208-212 . 百度学术
    10. 方帆,孙冲,舒向伟,朱忠云,方子和. 页岩中甲烷等温吸附量计算问题及方法改进. 石油实验地质. 2018(01): 71-77+89 . 百度学术
    11. 刘尚平,李希建,尹鑫,张培,李维维. 高温高压下页岩气等温吸附线拟合模型优选. 中国矿业. 2018(06): 160-166 . 百度学术
    12. 孙彩蓉,唐书恒,张松航,赵俊斌,魏建光,张廷强. 页岩等温吸附特征及吸附异常原因. 大庆石油地质与开发. 2017(05): 155-163 . 百度学术
    13. 唐润池,汪吉林,常溪溪,王林杰,亓宁. 超临界甲烷等温吸附模型对构造煤的适用性研究. 煤矿安全. 2017(06): 9-12 . 百度学术
    14. 黄海帆,李希建,李维维,沈仲辉. 页岩气吸附分子模拟中宏观影响因素微观化. 煤炭技术. 2017(06): 40-42 . 百度学术
    15. 李希建,李维维,黄海帆,沈仲辉. 深部页岩高温高压吸附特性分析. 特种油气藏. 2017(03): 129-134 . 百度学术
    16. 蒲明政,唐善法,姚逸风,周天元,薛汶举. 涪陵焦石坝地区页岩气吸附规律研究. 钻采工艺. 2017(04): 40-43+3 . 百度学术
    17. 赵春鹏,伦增珉,王卫红,刘华,王海涛. 储层条件下龙马溪组全直径页岩吸附实验. 断块油气田. 2016(06): 749-752 . 百度学术
    18. 郭怀志,潘保芝,张丽华,白雪. 页岩吸附模型及吸附气含气量计算方法进展. 地球物理学进展. 2016(03): 1080-1087 . 百度学术

    其他类型引用(34)

图(9)  /  表(2)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  35
  • PDF下载量:  35
  • 被引次数: 52
出版历程
  • 收稿日期:  2023-07-11
  • 修回日期:  2025-01-14
  • 网络出版日期:  2025-02-07
  • 刊出日期:  2025-04-27

目录

    /

    返回文章
    返回