Inspiration and Practice of Drilling and Completion in 10 000-Meter Ultra-Deep Wells in the Gulf of Mexico
-
摘要:
目前,我国陆上钻井能力已达9 000 m水平,且随着深地塔科1井钻深突破万米,成为全球第二个实现陆上万米钻探的国家,初步具备万米深地油气资源勘探开发能力。但是,目前我国仅完钻5口井深超过9 000 m的特深井,万米深地钻完井技术仍处于起步与探索阶段。美国墨西哥湾是世界上超深特深井数量最多的地区,并在钻井−完井−开发一体化设计理念、井身结构优化与拓展、关键装备与工具仪器、强化钻井参数提速和井下事故复杂防控等方面已形成先进理念与成熟做法。为此,系统总结分析了美国墨西哥湾万米级特深井钻井周期、钻完井成本、原油产量、钻完井方案、成熟应用装备、工艺技术等,认为我国在地质条件、地层可钻性等方面存在差异,万米级特深井的数量、钻井周期及机械钻速与美国墨西哥湾相比仍存在一定差距。结合我国万米深地油气资源钻探面临的工程难题与挑战,提出了万米深地钻探工程技术及装备发展方向及建议,为实现我国万米深地油气资源勘探开发,推动钻完井关键技术装备迭代升级提供参考借鉴。
Abstract:Currently, China’s onshore drilling capability has reached the level of 9000 m in depth. In addition, the drilling depth of Well Take-1 has successfully exceeded 10000 m, making China the second country in the world to achieve onshore drilling depths of over 10 000 m, indicating the ability to explore and develop oil and gas resources at 10000 m in depth. However, at present, only five ultra-deep wells over 9000 m have been drilled in China, and the drilling and completion technology for wells over 9 000 m is still in the initial exploratory stage. The Gulf of Mexico in the United States has the largest number of ultra-deep wells in the world, and advanced concepts and mature practices have been formed in multiple areas including the design concept of drilling-completion-development integration, casing program optimization and expansion, key equipment and tools, drilling parameters strengthening for speeding up, and prevention and control of complex downhole situations. To this end, the drilling cycle, drilling and completion cost, crude oil production, drilling and completion scheme, mature application equipment, and technology of ultra-deep wells in the Gulf of Mexico were systematically summarized. It is concluded that due to differences in geological conditions and formation drillability, there are gaps in the number, drilling cycle, and rate of penetration of 10000-meter ultra-deep wells in China compared with those in the Gulf of Mexico. In accordance with the engineering problems and challenges faced in drilling China’s oil and gas resources over 10000 m in depth, development directions and suggestions of 10000-meter drilling engineering technology and equipment are introduced, so as to provide a reference for achieving the exploration and development of China’s oil and gas resources over 10000 m in depth and promoting the iterative upgrading of key drilling and completion technology and equipment.
-
-
表 1 越洋钻探公司深水钻井平台/钻井船关键装备性能参数
Table 1 Key equipment performance parameters of TransOcean Deepwater Drilling Platform/Ship
装备
类型设备名称 性能参数 动力
装备柴油
发电机4~6台,总功率20 000~48 000 kW,配合直流发电机驱动,主动力 1~2台,总功率500~2 500 kW,配合直流发电机驱动,应急动力 钻机
装备钻机大钩 主载荷9 060~12 700 kN ,辅助载荷
0~12 000 kN绞车 1~2台,载荷10 000~12 500 kN 顶驱 NOV TD-100或TD125型,1~2台,最大钩载10 000~12 500 kN,最大转速250~280 r/min,最大连续输出扭矩88~137 kN·m,冲管承压上限51.6 MPa 钻井泵 NOV 2200HP Triplex型,4~5 台,承压上限51.6 MPa 高压管汇 承压上限51.6 MPa 固控设备 2~6台300目振动筛,除砂除泥一体机,中高速离心机等 防喷
装备闸板
防喷器NOV或Cameron公司五至七闸板防喷器1台,压力等级105 MPa 环形
防喷器NOV或Cameron公司环形防喷器2台,压力等级70 MPa 表 2 典型万米级特深井钻井应用的关键钻具
Table 2 Key drilling tools used in typical 10 000-meter ultra-deep wells
开次 井眼直径/
mm垂深/m 关键钻具 最大
井斜/(°)最大狗腿度/
((°)·(30m)−1)导管 762.0 0~2 224 螺杆 0.35 0.09 一开 660.4 2 224~2 771 旋导 1.22 0.82 二开 460.4×533.4 2 771~3 536 旋导+随钻扩眼工具 0.09 0.10 三开 419.1×482.6 3 536~5 212 旋导+随钻扩眼工具 0.17 0.17 四开 368.3×400.1 5 212~7 162 旋导+随钻扩眼工具 0.37 0.53 五开 311.1×342.9 7 162~7 681 旋导+随钻扩眼工具 0.31 0.40 六开 269.9 7 681~8 716 旋导 0.06 0.06 表 3 典型万米级特深井不同井段应用的钻杆
Table 3 Drill pipes used in typical 10 000-meter ultra-deep wells at different sections
开次 井眼直径/mm 井深/m 钻杆钢级 钻杆直径/mm 导管 一开 660.4 2743 S135 168.3 二开 457.2×558.8 2743~3962 S135 三开 419.1×508.0 3962~5790 S135 四开 368.3×419.1 5790~7620 S135 五开 311.1×342.9 7620~8230 S135 168.3+149.2 六开 269.9×311.1 8230~8841 S135 七开 215.9×250.8 8 841~10360 S135 168.3+149.2+139.7 表 4 多口典型万米级特深井不同尺寸井眼下的钻井参数
Table 4 Drilling parameters used in wellbore with different sizes of typical 10 000-meter ultra-deep wells
开次 地层 井眼直径/mm 钻具组合 井深/m 钻压/kN 转速/
(r·min−1)扭矩/
(kN·m)排量/
(L·s−1)立压/
MPa钻速/
(m·h−1)一开 泥线—盐上 660.4 PDC钻头+旋导 2316~3383 40~70 150 13~23 82 28~30 25~33 一开 泥线—盐上 660.4 复合钻头+旋导 2073~2438 40~70 150 6~13 74~88 18~21 76~127 一开 盐膏层 660.4 复合钻头+旋导 2438~3048 260~280 150 40~47 75~88 21~25 38~40 二开 盐膏层 419.1×558.8 PDC钻头+旋导+随钻扩眼工具 3718~5669 170~250 180 47~68 75 34~40 76~96 二开 盐膏层 419.1 复合钻头+旋导 3048~6035 300~350 160 40~54 56 21~28 45~50 三开 盐膏层 469.9×533.4 PDC钻头+随钻扩眼工具 5943~6401 140~250 150~160 54~67 30~38 四开 盐下 250.8×269.9 复合钻头+随钻扩眼工具 7620~8839 130~250 130~180 20~50 30~33 30~35 12~20 四开 盐下 250.8×269.9 复合钻头+随钻扩眼工具 7620~9144 130~250 110~140 25~44 36 27~35 12~54 -
[1] 王兆明,温志新,贺正军,等. 全球近10年油气勘探新进展特点与启示[J]. 中国石油勘探,2022,27(2):27–37. WANG Zhaoming, WEN Zhixin, HE Zhengjun, et al. Characteristics and enlightenment of new progress in global oil and gas exploration in recent ten years[J]. China Petroleum Exploration, 2022, 27(2): 27–37.
[2] 赵文智,窦立荣. 中国陆上剩余油气资源潜力及其分布和勘探对策[J]. 石油勘探与开发,2001,28(1):1–5. ZHAO Wenzhi, DOU Lirong. Potential, distribution and exploration strategy of petroleum resources remained onshore China[J]. Petroleum Exploration and Development, 2001, 28(1): 1–5.
[3] 苏义脑,路保平,刘岩生,等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺,2020,42(5):527–542. SU Yinao, LU Baoping, LIU Yansheng, et al. Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5): 527–542.
[4] 汪海阁,黄洪春,毕文欣,等. 深井超深井油气钻井技术进展与展望[J]. 天然气工业,2021,41(8):163–177. doi: 10.3787/j.issn.1000-0976.2021.08.015 WANG Haige, HUANG Hongchun, BI Wenxin, et al. Deep and ultra-deep oil/gas well drilling technologies: progress and prospect[J]. Natural Gas Industry, 2021, 41(8): 163–177. doi: 10.3787/j.issn.1000-0976.2021.08.015
[5] 汪海阁,黄洪春,纪国栋,等. 中国石油深井、超深井和水平井钻完井技术进展与挑战[J]. 中国石油勘探,2023,28(3):1–11. WANG Haige, HUANG Hongchun, JI Guodong, et al. Progress and challenges of drilling and completion technologies for deep, ultra-deep and horizontal wells of CNPC[J]. China Petroleum Exploration, 2023, 28(3): 1–11.
[6] WEATHERL M H. GOM deepwater field development challenges at Green Canyon 468 Pony[R]. SPE 137220, 2010.
[7] 赵阳,卢景美,刘学考,等. 墨西哥湾深水油气勘探研究特点与发展趋势[J]. 海洋地质前沿,2014,30(6):27–32. ZHAO Yang, LU Jingmei, LIU Xuekao, et al. Oil and gas exploration in deep water area of Gulf of Mexico[J]. Marine Geology Frontiers, 2014, 30(6): 27–32.
[8] TAYLOR S, HINER M. Permanent borehole seismic in ultra deep offshore appraisal wells[R]. OTC 22580, 2011.
[9] CUNHA J C, MOREIRA O, AZEVEDO G H, et al. Challenges on drilling and completion operations of deep wells in ultra-deepwater zones in the Gulf of Mexico[R]. SPE 125111, 2009.
[10] 张兴文. 墨西哥湾盆地深部油气藏地质特征、形成条件及成藏模式[D]. 北京:中国石油大学(北京),2021. ZHANG Xingwen. Geological characteristics, formation conditions and accumulation models of deep and ultra-deep oil and gas in the Gulf of Mexico Basin[D]. Beijing: China University of Petroleum(Beijing), 2021.
[11] 张兴文,庞雄奇,李才俊,等. 深层—超深层高孔高渗碎屑岩油气藏地质特征、形成条件及成藏模式:以墨西哥湾盆地为例[J]. 石油学报,2021,42(4):466–480. ZHANG Xingwen, PANG Xiongqi, LI Caijun, et al. Geological characteristics, formation conditions and accumulation model of deep and ultra-deep, high-porosity and high-permeability clastic reservoirs: a case study of Gulf of Mexico Basin[J]. Acta Petrolei Sinica, 2021, 42(4): 466–480.
[12] CHAVEZ M A, GARCIA G A, POGOSON O, et al. Lower tertiary: a fully comprehensive well completion design methodology to overcome reservoir challenges[R]. SPE 165062, 2013.
[13] 卢景美,张金川,严杰,等. 墨西哥湾北部深水区Wilcox沉积特征及沉积模式研究[J]. 沉积学报,2014,32(6):1132–1139. LU Jingmei, ZHANG Jinchuan, YAN Jie, et al. Study on depositional characteristics and model of Wilcox in the deep waters of northern Gulf of Mexico[J]. Acta Sedimentologica Sinica, 2014, 32(6): 1132–1139.
[14] 何保生,张钦岳,冷雪霜. 墨西哥超深水盐下钻井技术及实践[J]. 中国海上油气,2021,33(6):101–109. HE Baosheng, ZHANG Qinyue, LENG Xueshuang. Ultra deepwater pre-salt drilling technologies and their practices in Mexico[J]. China Offshore Oil and Gas, 2021, 33(6): 101–109.
[15] 张星星,黄小龙,严德,等. 墨西哥湾深水岩膏地层钻井实践[J]. 石油钻采工艺,2015,37(1):99–102. ZHANG Xingxing, HUANG Xiaolong, YAN De, et al. Drilling practices of deepwater salt rock stratum in Gulf of Mexico[J]. Oil Drilling & Production Technology, 2015, 37(1): 99–102.
[16] MALDONADO B, ARRAZOLA A, MORTON B. Ultradeep HP/HT completions: classification, design methodologies, and technical challenges[R]. OTC 17927, 2006.
[17] MATHUR R, SEILER N, SRINIVASAN A, et al. Opportunities and challenges of deepwater subsalt drilling[R]. SPE 127687, 2010.
[18] KUNNING J, WU Yafei, THOMSON I J, et al. Non-retrievable rotating liner drilling system successfully deployed to overcome challenging highly stressed rubble zone in a GOM ultra-deepwater sub-salt application[R]. SPE 124854, 2009.
[19] ALI T H, MATHUR R, SHARMA N. Build-to-suit technologies for wellbore construction in deepwater and ultradeepwater Gulf of Mexico[R]. SPE 136840, 2010.
[20] CHAMAT E, ISRAEL R. Efficient and reliable vertical drilling of top holes with RSS in deepwater GOM[R]. SPE 151395, 2012.
[21] PRASAD U, ROY CHOWDHURY A, ANDERSON M. Drilling mechanics analysis of record hybrid drill bit runs in Gulf of Mexico salt formation and its correlation with rock-mechanical properties of salt[R]. SPE 195860, 2019.
[22] UBARU C, THOMSON I, RADFORD S. Drilling and under-reaming in the GOM deepwater ultradeep lower tertiary: history of a record run in the world’s deepest oil or gas well[R]. SPE 145259, 2011.
[23] BARKER J W. Wellbore design with reduced clearance between casing strings[R]. SPE 37615, 1997.
[24] ROSENBERG S M, GALA D M. Liner drilling technology as a tool to reduce NPT-Gulf of Mexico experiences[R]. SPE 146158, 2011.
[25] YI Xianjie, CORBIN K, DAVIS J, et al. Solving deepwater GoM pore pressure puzzle: multiple activation reamer eliminates trip prior to running coring bottomhole assembly[R]. SPE 167916, 2014.
[26] FILIPPOV A, MACK R, COOK L, et al. Expandable tubular solutions[R]. SPE 56500, 1999.
[27] BULLOCK M, RUZIC N, PEREZ M, et al. High performance solid expandables for deepwater[R]. SPE 170257, 2014.
[28] TOUBOUL N, WOMBLE L, KOTRLA J, et al. New technologies combine to reduce drilling costs in ultradeepwater applications[R]. SPE 90830, 2004.
[29] NYLUND J, FLAMING S, MITRUSHI K. Power of design: solid expandable installation sets multiple new records in deepshelf HP/HT well[R]. SPE 128366, 2010.
[30] CRUZ E J, BAKER R V, YORK P, et al. Mitigating sub-salt rubble zones using high collapse, cost effective solid expandable Monobore systems[R]. OTC 19008, 2007.
[31] SIDDIQUI A A, KARIMI M. Including enabling technologies in the wellbore construction basis of design: smart strategy to benefit from casing while drilling, open-hole expandable liners, and liner drilling[R]. OTC 24089, 2013.
[32] WHITSON C D, MCFADYEN M K. Lessons learned in the planning and drilling of deep, subsalt wells in the deepwater Gulf of Mexico[R]. SPE 71363, 2001.
[33] MOYER M C, LEWIS S B, COTTON M T, et al. Challenges associated with drilling a deepwater, subsalt exploration well in the Gulf of Mexico: Hadrian prospect[R]. SPE 154928, 2012.
[34] SHAUGHNESSY J, DAUGHERTY W, GRAFF R, et al. More ultra-deepwater drilling problems[R]. SPE 105792, 2007.
[35] WILLIAMS C, MASON J S, SPAAR J. Operational efficiency on eight-well sidetrack program saves $7.3 million vs historical offsets in MP 299/144 GOM[R]. SPE 67826, 2001.
[36] SOARES C, ARMENTA M, PANCHAL N. Enhancing reamer drilling performance in deepwater Gulf of Mexico wells[J]. SPE Drilling & Completion, 2020, 35(3): 329–356.
[37] ROY CHOWDHURY A, SERRANO R, RODRIGUE W. Pilot bit and reamer matching: real-time downhole data differentiates hybrid drill bit’s suitability with concentric reamer in deepwater, Gulf of Mexico application[R]. SPE 194060, 2019.
[38] EDWARDS H, VAN NOORT R, CLAIRMONT B, et al. Modeling system improves salt drilling technique with concentric reamer/RSS, deepwater GoM[R]. SPE 158920, 2012.
[39] JELLISON M, CHANDLER R B, LANGDON S, et al. Deepwater and critical drilling with new connection technology: case histories and lessons learned[R]. SPE 133857, 2010.
[40] ROHLEDER S A, SANDERS W W, WILLIAMSON R N, et al. Challenges of drilling an ultra-deep well in deepwater: Spa Prospect[R]. SPE 79810, 2003.
[41] D'AMBROSIO P, PROCHASKA E, BOUSKA R, et al. Cost effective ultra-large diameter PDC bit drilling in deepwater Gulf of Mexico[R]. SPE 163448, 2013.
[42] RAMIREZ S, AGUILAR R, GONZALEZ L F, et al. Evolution of rotary steerable BHA designs in Mexico offshore: solution to stop multiple drillstring failures in high-vibration environment[R]. SPE 138963, 2010.
[43] DYKSTRA M W, ARMENTA M A, AIN F A M, et al. Converting power to performance: Gulf of Mexico examples of an optimization workflow for bit selection, drilling system design and operation[R]. OTC 29065, 2018.
[44] CHOWDHURY A R, CALLAIS R, ROTHE M, et al. Mitigating salt and sub-salt drilling challenges using hybrid bit technology in deepwater, Gulf of Mexico[R]. SPE 180342, 2016.
[45] HAVARD K, DURAIRAJAN B, STITH S, et al. Collaborative bit and reamer design solution for performance drilling in salt and high durability in challenging subsalt interval in one run, deepwater Gulf of Mexico[R]. OTC 29783, 2019.
[46] 韩天旺. 双梯度钻井条件下深水井身结构设计优化研究[D]. 北京:中国石油大学(北京),2020. HAN Tianwang. Optimal design of deepwater well structure with dual gradient drilling technology[D]. Beijing: China University of Petroleum (Beijing), 2020.
[47] HARIHARAN P R, JUDGE R A. The economic analysis of a two-rig approach to drill in deepwater Gulf of Mexico using dual gradient pumping technology[R]. SPE 84272, 2003.
[48] SCHUBERT J J, JUVKAM-WOLD H C, CHOE J. Well-control procedures for dual gradient drilling as compared to conventional riser drilling[J]. SPE Drilling & Completion, 2006, 21(4): 287–295.
[49] ZIEGLER R, SABRI M S, IDRIS M R, et al. First successful commercial application of dual gradient drilling in ultra-deepwater GOM[R]. SPE 166272, 2013.
[50] DOWELL J D. Deploying the world’s first commercial dual gradient drilling system[R]. SPE 137319, 2010.
[51] STAVE R. Implementation of dual gradient drilling[R]. OTC 25222, 2014.
[52] ZIEGLER R. Dual gradient drilling is ready for primetime: the benefits of a retrofit system for better well control, enhanced water depth capability and flat time reduction[R]. OTC 25267, 2014.
[53] CHUSTZ M J, MAY J, WALLACE C, et al. Managed-pressure drilling with dynamic annular pressure-control system proves successful in redevelopment program on auger TLP in deepwater Gulf of Mexico[R]. SPE 108348, 2007.
[54] RAMIREZ S, AGUILAR R, HERRERA R, et al. First MPD automated system application in offshore Gulf of Mexico well confirms method, huge benefits[R]. SPE 138907, 2010.
[55] SAMUEL N, SANTOS H, VALLURI S. First deepwater MPD operation in the Gulf of Mexico: challenges and lessons learned[R]. SPE 180324, 2016.
[56] HERNANDEZ J, ARNONE M, VALECILLOS J, et al. Using managed pressure drilling and early kick/loss detection system to execute a challenging deepwater completions job in the Gulf of Mexico[R]. SPE 194554, 2019.
[57] TEOH M, MOGHAZY S, SMELKER K, et al. Managed pressure cementing MPC within a narrow pressure window, deepwater Gulf of Mexico application[R]. SPE 194536, 2019.
[58] VACZI K, MORALES D, CHIMA C. Implementation of MPD systems in the deepwater Gulf of Mexico to drill highly depleted reservoir sections[R]. SPE 208771, 2022.
[59] TUCKWELL N, NABIYEV A, PARKER M, et al. MPD during the global pandemic in the Gulf of Mexico: how virtual meetings, planning, and communication facilitated a safe and successful implementation of CBHP MPD[R]. SPE 206392, 2021.
[60] TUCKWELL N, ARNONE M. Real-time downhole pressure environment determination during managed pressure drilling, tripping, and cementing operations to improve well construction safety standards in deepwater Gulf of Mexico[R]. SPE 210541, 2022.
[61] ARMENTA M, DYKSTRA M, MUESEL J, et al. Delivering best in class ROP performance by pushing the operational envelope with novel advanced bit designs[R]. SPE 191730, 2018.
[62] RAHMANI R, OMIDVAR N, HANLEY C. Novel drill bit technology combined with system matcher increases torque efficiency and reduces stick-slip and vibrations[R]. SPE 189671, 2018.
[63] ROY CHOWDHURY A, SERRANO R, MARTIN B, et al. Self-adaptive depth of cut control technology: a path-breaking approach to address torsional dysfunction and securing drilling performance gain in challenging deepwater Gulf of Mexico well[R]. SPE 191510, 2018.
[64] RODRIGUE W, CALLAIS R, ROY CHOWDHURY A. Self-adjusting PDC bits reduce drilling dysfunction, increase drilling efficiency in Gulf of Mexico wells[R]. SPE 194128, 2019.
[65] CHOWDHURY A R, CALLAIS R, RODRIGUE W, et al. Meeting the large-diameter drilling challenges and securing sustainable performance gains using hybrid bit technology in deepwater Gulf of Mexico[R]. SPE 187052, 2017.
[66] MCCARTHY J, KABBARA A, BURNETT T, et al. Careful planning and application of an asymmetric vibration damping tool dramatically improves underreaming while drilling performance in deepwater drilling[R]. SPE 156164, 2012.
[67] GAINES M, MORRISON R D, HERRINGTON D. Step change drilling technology modifies drill string dynamics and results in reduced drilling vibrations[R]. SPE 166445, 2013.
[68] AMORIM D, HANLEY C, LEITE D J. BHA selection and parameter definition using vibration prediction software leads to significant drilling performance improvements[R]. SPE 152231, 2012.
[69] COMPTON M, VERANO F, NELSON G, et al. Managing downhole vibrations for hole-enlargement-while-drilling in deepwater environment: a proven approach utilizing drillstring dynamics model[R]. SPE 139234, 2010.
[70] ALGU D R, DENHAM W, NELSON G, et al. Maximizing hole enlargement while drilling (HEWD) performance with state-of-the-art BHA dynamic analysis program and operation road map[R]. SPE 115607, 2008.
[71] PLUTT L A J, PERE A L, PARDO N O, et al. Achieving improved performance through drilling optimization and vibration management at a GoM development project[R]. SPE 119299, 2009.
[72] PEREIRA R, CARDOZO J, BOGAERTS M, et al. Use of surfactant in cement slurry to mitigate incompatibility with synthetic-based drilling fluids[R]. OTC 27902, 2017.
[73] DIEFFENBAUGHER J, DUPRE R, AUTHEMENT G, et al. Drilling fluids planning and execution for a world record water depth well[R]. SPE 92587, 2005.
[74] JAIMES J P, CROY S, BOUGUETTA M, et al. Drilling fluids design and field deployment for the first HTHP deepwater production project in the US Gulf of Mexico[R]. SPE 208668, 2022.
[75] MCBEE J, EVANS B, UMBHER K. Lessons learned on Gulf of Mexico gas wells drilled with OBM and completed with heavy brine[R]. SPE 109589, 2007.
[76] VAN OORT E, LEE J, FRIEDHEIM J, et al. New flat-rheology synthetic-based mud for improved deepwater drilling[R]. SPE 90987, 2004.
[77] CLAPPER D K, SZABO J J, SPENCE S, et al. One sack rapid mix and pump solution to severe lost circulation[R]. SPE 139817, 2011.
[78] DARUGAR Q A, SZABO J J, CLAPPER D K, et al. Single-sack fibrous pill treatment for high fluid loss zones[R]. SPE 149120, 2011.
[79] VAN OORT E, FRIEDHEIM J, PIERCE T, et al. Avoiding losses in depleted and weak zones by constantly strengthening wellbores[J]. SPE Drilling & Completion, 2011, 26(4): 519–530.
[80] OAKLEY D, CONN L. Drilling fluid design enlarges the hydraulic operating windows of managed pressure drilling operations[R]. SPE 139623, 2011.
[81] KAMGANG S, PIERRE A, NEUPANE R, et al. Cement evaluation case studies; application of multiphysics measurements to address different challenges in deepwater Gulf of Mexico environment[R]. OTC 31601, 2022.
[82] O’LEARY J, FLORES J C, RUBINSTEIN P, et al. Cementing deepwater, low-temperature Gulf of Mexico formations prone to shallow flows[R]. SPE 87161, 2004.
[83] DIARRA R, BOGAERTS M, ANDREWS H, et al. Low-temperature dispersant improves cement slurry properties in deepwater operations[R]. OTC 27534, 2017.
[84] FULLER G A, BOLADO D, HARDY F, et al. A Gulf of Mexico case history: benefits of foamed cementing to combat a SWF[R]. SPE 128160, 2010.
[85] FAUL R, REDDY B R, GRIFFITH J, et al. Next-generation cementing systems to control shallow water flow[R]. OTC 11977, 2000.
[86] ASLAKSON J, DOHERTY D, SMALLEY E. Preventing annular flow after cementing, one pulse at a time: offshore Gulf of Mexico cement pulsation field results[R]. SPE 94230, 2005.
[87] VALLEJO V, OLIVARES A, SALINAS D, et al. Ultra deepwater salt zone cementing in Gulf of Mexico wells[R]. OTC 27960, 2017.
[88] ZHANG Jincai, STANDIFIRD W, LENAMOND C. Casing ultradeep, ultralong salt sections in deep water: a case study for failure diagnosis and risk mitigation in record-depth well[R]. SPE 114273, 2008.
[89] HUNTER B, TAHMOURPOUR F, FAUL R. Cementing casing strings across salt zones: an overview of global best practices[J]. SPE Drilling & Completion, 2010, 25(4): 426–437.
[90] BOGAERTS M, CARDOZO J, FLAMANT N, et al. Novel 3D fluid displacement simulations improve cement job design and planning in the Gulf of Mexico[R]. SPE 196077, 2019.
[91] DOOPLY M, SIANIPAR S, RODRIGUEZ F, et al. Overcoming tight annulus cementing design challenges: Gulf of Mexico case study[R]. SPE 189687, 2018.
[92] CONTRERAS J, BOGAERTS M, GRIFFIN D, et al. Real-time monitoring and diagnoses on deepwater cement barrier placement: case studies from the Gulf of Mexico and Atlantic Canada[R]. OTC 27797, 2017.
[93] DUSSEAULT M B, MAURY V, SANFILIPPO F, et al. Drilling through salt: constitutive behavior and drilling strategies[R]. ARMA-04-608, 2004.
[94] SALEH S, WILLIAMS K E, RIZVI A. Rubble zone below salt: identification and best drilling practices[R]. SPE 166115, 2013.
[95] VICEER S, ALBERTIN M L, VINSON G, et al. Improving drilling efficiency using a look-ahead VSP to predict pressure, exiting salt: five Gulf of Mexico examples[R]. OTC 18262, 2006.
[96] HAN Gang, HUNTER K C, OSMOND J, et al. Drilling through bitumen in Gulf of Mexico: the shallower vs the deeper[R]. OTC 19307, 2008.
[97] HAN Gang, HUNTER K, RESSLER J, et al. Deepwater bitumen drilling: what happened downhole?[R]. SPE 111600, 2008.
[98] HAN Gang, OSMOND J, ZAMBONINI J. A $100MM “rock”: Bitumen in the deepwater Gulf of Mexico[R]. ARMA-09-010, 2009.
[99] RICH D, ROGERS B, DYSON W, et al. GoM deepwater completions: the devil is in the details[R]. OTC 20399, 2010.
[100] MILLHEIM K, WILLIAMS T E, YEMINGTON C R. Evaluation of well testing systems for three deepwater Gulf of Mexico (GOM) reservoir types[R]. SPE 145682, 2011.
[101] SANFORD J R, CORDEDDU C, EDWARDS W J, et al. Subsea slimhole completions in deepwater Gulf of Mexico: case histories[R]. SPE 110359, 2007.
[102] TECHENTIEN B, GRIGSBY T, FROSELL T. Current state of the one-trip multizone sand control completion system and the conundrum faced in the Gulf of Mexico lower tertiary[R]. OTC 27183, 2016.
[103] DUSTERHOFT R, STROBEL M, SZATNY M. An automated software workflow to optimize Gulf of Mexico Lower Tertiary Wilcox sand reservoirs[R]. SPE 151754, 2012.
[104] BURGER R, GRIGSBY T, ROSS C, et al. Single-trip multiple-zone completion technology has come of age and meets the challenging completion needs of the Gulf of Mexico’s deepwater lower tertiary play[R]. SPE 128323, 2010.
[105] TECHENTIEN B, INGRAM S, GROSSMANN A. The future state of completions for the lower tertiary in the Gulf of Mexico[R]. OTC 27203, 2016.
[106] OGIER K S, HADDAD Z, MOREIRA O, et al. The world’s deepest frac-pack completions using a single-trip multi-zone system: a Gulf of Mexico case study in the Lower Tertiary Formation[R]. SPE 147313, 2011.
[107] 刘岩生,张佳伟,黄洪春. 中国深层—超深层钻完井关键技术及发展方向[J]. 石油学报,2024,45(1):312–324. LIU Yansheng, ZHANG Jiawei, HUANG Hongchun. Key technologies and development direction for deep and ultra-deep drilling and completion in China[J]. Acta Petrolei Sinica, 2024, 45(1): 312–324.
[108] 陈宗琦,刘湘华,白彬珍,等. 顺北油气田特深井钻井完井技术进展与发展思考[J]. 石油钻探技术,2022,50(4):1–10. CHEN Zongqi, LIU Xianghua, BAI Binzhen, et al. Technical progress and development consideration of drilling and completion engineering for ultra-deep wells in the Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(4): 1–10.
[109] HAHN D, ATKINS M, RUSSELL J, et al. Gulf of Mexico shelf deep ultra HPHT completions-current technology gaps[R]. SPE 97560, 2005.
[110] SANDERS W, BAUMANN C E, WILLIAMS H A R, et al. Efficient perforation of high-pressure deepwater wells[R]. OTC 21758, 2011.
[111] BAUMANN C, BARNARD K, WILLIAMS H. Gunshock risk evaluation when perforating high pressure wells[R]. SPE 159119, 2012.
[112] BRINSDEN M, GAVRIC Z, LE C, et al. Perforating the largest high-pressure wells in the Gulf of Mexico[R]. OTC 26644, 2016.
-
期刊类型引用(8)
1. 闫玉,黄晶,贾千千,彭莎,朱维奇,王超. 随钻测量仪器中正脉冲发生器旋转阀控制模拟研究. 阀门. 2025(03): 299-304 . 百度学术
2. 伊明,戴勇,杨焕强,南亚东,冀梦佳,梅云涛. 负压力窗口控压下套管井筒压力控制技术. 石油钻探技术. 2024(01): 17-25 . 本站查看
3. 张智,向世林,杜威,张万栋,张超,赵苑瑾,杨昆. 海上超高温高压钻井开停泵对瞬态波动压力的影响. 水动力学研究与进展A辑. 2023(02): 293-302 . 百度学术
4. 左凯,牛贵峰,王川,刘静. 平台扰动下的无隔水管钻井井底压力影响研究. 石油机械. 2022(06): 58-64 . 百度学术
5. 刘占魁,田林海,吴波,段文博,吴家坤,温春明. 沙湾凹陷西斜坡砂砾岩地层井壁失稳机理及复杂处理. 西部探矿工程. 2021(06): 51-53 . 百度学术
6. 王江帅,李军,柳贡慧,罗晓坤. 气侵条件下新型双梯度钻井环空出口流量变化规律研究. 石油钻探技术. 2020(04): 43-49 . 本站查看
7. 王江帅,李军,任美鹏,柳贡慧,张更,张锐尧. 控压钻井条件下漏层位置判别新方法. 石油机械. 2020(09): 15-19 . 百度学术
8. 巨然,管志川,黄熠,罗鸣,李文拓,邓文彪. 南海莺–琼盆地复杂地层套管–井眼间隙优化. 石油钻探技术. 2019(01): 32-36 . 本站查看
其他类型引用(4)