墨西哥湾万米级特深井钻完井实践与启示

汪海阁, 张佳伟, 黄洪春, 纪国栋, 郝晨

汪海阁,张佳伟,黄洪春,等. 墨西哥湾万米级特深井钻完井实践与启示[J]. 石油钻探技术,2024, 52(2):12-23. DOI: 10.11911/syztjs.2024121
引用本文: 汪海阁,张佳伟,黄洪春,等. 墨西哥湾万米级特深井钻完井实践与启示[J]. 石油钻探技术,2024, 52(2):12-23. DOI: 10.11911/syztjs.2024121
WANG Haige, ZHANG Jiawei, HUANG Hongchun, et al. Inspiration and practice of drilling and completion in 10 000-meter ultra-deep wells in the Gulf of Mexico [J]. Petroleum Drilling Techniques,2024, 52(2):12-23. DOI: 10.11911/syztjs.2024121
Citation: WANG Haige, ZHANG Jiawei, HUANG Hongchun, et al. Inspiration and practice of drilling and completion in 10 000-meter ultra-deep wells in the Gulf of Mexico [J]. Petroleum Drilling Techniques,2024, 52(2):12-23. DOI: 10.11911/syztjs.2024121

墨西哥湾万米级特深井钻完井实践与启示

基金项目: 中国石油集团关键核心技术攻关项目“万米超深层油气资源钻完井关键技术与装备研究” (编号:2022ZG06)及 “智能钻完井控制理论与关键模型研究”(编号:2023ZZ0601)联合资助。
详细信息
    作者简介:

    汪海阁(1967—),男,河南南阳人,1989年毕业于石油大学(华东)开发系钻井专业,1992年获石油大学(北京)油气田开发工程专业硕士学位,1995年获石油大学(北京)油气井工程专业博士学位,正高级工程师,博士生导师,主要从事钻井科研、规划与技术支持工作。系本刊编委。E-mail: wanghaigedri@cnpc.com.cn

    通讯作者:

    张佳伟,zhangjwdri@cnpc.com.cn

  • 中图分类号: TE245

Inspiration and Practice of Drilling and Completion in 10 000-Meter Ultra-Deep Wells in the Gulf of Mexico

  • 摘要:

    目前,我国陆上钻井能力已达9 000 m水平,且随着深地塔科1井钻深突破万米,成为全球第二个实现陆上万米钻探的国家,初步具备万米深地油气资源勘探开发能力。但是,目前我国仅完钻5口井深超过9 000 m的特深井,万米深地钻完井技术仍处于起步与探索阶段。美国墨西哥湾是世界上超深特深井数量最多的地区,并在钻井−完井−开发一体化设计理念、井身结构优化与拓展、关键装备与工具仪器、强化钻井参数提速和井下事故复杂防控等方面已形成先进理念与成熟做法。为此,系统总结分析了美国墨西哥湾万米级特深井钻井周期、钻完井成本、原油产量、钻完井方案、成熟应用装备、工艺技术等,认为我国在地质条件、地层可钻性等方面存在差异,万米级特深井的数量、钻井周期及机械钻速与美国墨西哥湾相比仍存在一定差距。结合我国万米深地油气资源钻探面临的工程难题与挑战,提出了万米深地钻探工程技术及装备发展方向及建议,为实现我国万米深地油气资源勘探开发,推动钻完井关键技术装备迭代升级提供参考借鉴。

    Abstract:

    Currently, China’s onshore drilling capability has reached the level of 9000 m in depth. In addition, the drilling depth of Well Take-1 has successfully exceeded 10000 m, making China the second country in the world to achieve onshore drilling depths of over 10 000 m, indicating the ability to explore and develop oil and gas resources at 10000 m in depth. However, at present, only five ultra-deep wells over 9000 m have been drilled in China, and the drilling and completion technology for wells over 9 000 m is still in the initial exploratory stage. The Gulf of Mexico in the United States has the largest number of ultra-deep wells in the world, and advanced concepts and mature practices have been formed in multiple areas including the design concept of drilling-completion-development integration, casing program optimization and expansion, key equipment and tools, drilling parameters strengthening for speeding up, and prevention and control of complex downhole situations. To this end, the drilling cycle, drilling and completion cost, crude oil production, drilling and completion scheme, mature application equipment, and technology of ultra-deep wells in the Gulf of Mexico were systematically summarized. It is concluded that due to differences in geological conditions and formation drillability, there are gaps in the number, drilling cycle, and rate of penetration of 10000-meter ultra-deep wells in China compared with those in the Gulf of Mexico. In accordance with the engineering problems and challenges faced in drilling China’s oil and gas resources over 10000 m in depth, development directions and suggestions of 10000-meter drilling engineering technology and equipment are introduced, so as to provide a reference for achieving the exploration and development of China’s oil and gas resources over 10000 m in depth and promoting the iterative upgrading of key drilling and completion technology and equipment.

  • 随着油气田开发不断向深层和超深层推进,钻井和完井作业所面临的地质条件日益复杂,其中高温高压工况尤为突出,这对高密度钻井液和完井液的性能要求愈发严苛[12],如南海油气藏通常具有高温(温度150~200 ℃)、高压(压力系数1.70~2.20)特征。传统的高密度完井液大多以重晶石作为加重材料,在高温高压储层作业时存在固相侵入容易对储层造成伤害、高温下性能不够稳定及易沉降等问题,难以满足高温高压油气藏等复杂地质条件下作业的需求[35]。无固相高密度完井液具有诸多优势,不易引发储层堵塞、地层压力不均及井壁失稳等问题,能够在一定程度上提高作业效率;但目前无固相高密度完井液常用锌盐和铯盐等进行加重,存在毒性大、腐蚀性强和价格昂贵等缺点[67]

    为解决上述问题,笔者通过复合盐增效溶解方式,成功研制出密度可达1.85 kg/L的无固相高密度完井液体系,其具有良好的热稳定性、低腐蚀性、良好的储层配伍性和优异的储层保护功能,能够满足现场高温高压井作业的实际需求。无固相高密度完井液在南海某高温高压区块进行了现场应用,各项指标达到预期,表现出稳定的作业性能和良好的储层保护性能,为类似复杂储层完井作业提供了新的技术途径。

    高密度无固相完井液体系的核心在于水溶性加重剂(离子晶体)的科学选型与溶解行为调控。其溶解过程本质上是晶格中阴阳离子的解离,以及与溶剂分子发生配位取代反应的结果[89]。该过程的热力学驱动力取决于晶格能(即晶体内部离子间的结合强度)与水化能(离子与极性水分子间的作用能)之间的竞争平衡。

    依据库仑定律,离子间静电作用力与其电荷量的乘积成正比,与离子间距的平方成反比[10],因此离子半径是影响晶体结构稳定性和溶解特性的关键参数。较小半径或高价态离子的电荷密度更高,在水中易形成强烈的离子−偶极相互作用,促使水分子定向排列,进而构建出有序紧密的水合层结构(见图1)。这种强水合作用具有以下效应:1)致密的水合层显著提升了溶液的密度;2)高结合能的水合结构有效抑制了离子的迁移自由度,从而降低了结晶沉淀、氧化还原等二次反应的概率,增强了体系的热力学与化学稳定性。

    图  1  水分子在不同种类离子的水溶液中的排布
    Figure  1.  Arrangement of water molecules in different types of ionic aqueous solutions

    基于上述理论,通过合理设计高价离子种类与配比,构建了一种兼具高密度、低腐蚀与高稳定性的无固相完井液体系。具体配制方式:首先,配制基础单一盐溶液,随着盐的不断溶解,溶液中单一离子浓度逐渐升高,水合层的致密程度不断提高,覆盖范围不断扩大,溶液密度相应增大,同时离子迁移受到限制,溶液稳定性增强;随后,将其他的复合盐按一定摩尔比继续加入溶液中,通过不同类型高价阳离子的共同作用,形成更复杂的离子环境,从而更强烈地吸引水分子,形成更为致密的水合结构,进一步提升溶液的密度。同时,不同离子间的相互作用会抑制某些离子的结晶倾向,增强溶液的化学稳定性。在此基础上,针对游离高价离子的动态平衡问题补充螯合稳定剂,螯合稳定剂分子中的多齿配体结构能通过多位点配位与高价离子形成稳定的螯合物,可进一步抑制盐结晶的生成,从而在高温高压下维持溶液的稳定性;待溶质充分溶解后进行过滤,即得到高密度无固相完井液。

    对构建的高密度完井液进行了基础性能测试,测试结果表明,该完井液在温度20 ℃时的密度达1.85 kg/L,能够满足工程应用中对井筒内压力平衡的基本要求,从而确保深部高压储层作业过程中的安全性。同时,所配制完井液的浊度为16.27 NTU,满足工程对完井液中杂质含量的要求。

    结晶点测试结果显示,完井液在低温条件下仍能保持良好的稳定性,其结晶点低于−12.5 ℃,这意味着在低温环境下完井液不会因结晶现象而影响其密度和应用效果。

    此外,完井液的气液表面张力为26.54 mN/m,有助于降低完井液与液体固体表面的相互作用,提高其流动性和作业效率。温度20 ℃时,完井液的表观黏度和塑性黏度分别为18和17 mPa·s,表明其具有良好的流动性。

    完井液的高温稳定性测试结果表明,在170 ℃温度条件下静置3 d后,其密度变化仅为0.01 kg/L,表明完井液在高温环境下稳定性较好,可以有效保障井筒内的压力平衡,防止潜在的井下作业风险。

    试验结果表明,构建的高密度完井液可以满足关键工程参数要求,其热稳定性和低温性能均符合深部高压储层的井筒压力平衡需求和深水低温条件下完井液性能稳定的要求。

    完井液在高压低温环境下与天然气接触极易形成天然气水合物结晶,可能堵塞井筒、井下设备或造成储层伤害,严重影响作业安全与生产效率,因此需要测试高密度无固相完井液抑制天然气水合物生成的能力。

    一般来说,天然气水合物生成会伴随压力的快速下降,这是由于天然气水合物形成时,甲烷被捕获到天然气水合物晶体结构中,导致密闭系统中自由气体分子减少[1113]。因此可以在实验室内开展高密度无固相完井液抑制天然气水合物生成能力测试。测试采用钻完井液水合物测试试验装置,其主要结构为耐高压不锈钢材质的釜体,容量为2 L。制冷设备控制温度精确维持在4 ℃,高精度压力传感器可实时监测压力。首先,将配制好的高密度完井液注入反应釜,并确保完全密封;然后,缓慢注入甲烷气体,至压力达到15 MPa;最后,在低温条件下保持24 h,持续监测压力和温度,并通过连接的计算机系统每间隔30 s记录一次压力和温度数据,结果如图2所示。

    图  2  装有高密度完井液反应釜的压力变化曲线
    Figure  2.  Pressure variation inside reaction vessel containing high-density completion fluid

    图2可以看出,在低温高压条件下,反应釜内压力无明显波动,说明高密度无固相完井液在24 h内未生成天然气水合物,表明其具有良好的抑制天然气水合物生成的能力,能够在低温高压条件下保障作业的安全性和高效性。

    分析原因认为,高密度无固相完井液中高浓度的盐离子是抑制天然气水合物形成的关键因素,因为盐离子还会与甲烷分子竞争结合水分子。溶液中的甲烷分子需要与水分子结合才能形成天然气水合物的笼状结构,然而盐离子由于其电荷特性,对水分子具有更强的吸引力,优先与水分子结合形成水合离子,从而降低了甲烷分子与水分子结合的概率。这种竞争作用使甲烷分子难以与足够的水分子结合形成天然气水合物晶核,显著降低了天然气水合物核心结构的形成速率,进而抑制天然气水合物的生成。

    高密度完井液在压差作用下会不可避免地进入储层。通过测试高密度无固相完井液与储层流体的配伍性,可以确保完井液与地层流体接触时不会因盐析沉淀、酸碱度失衡或添加剂冲突而造成储层孔喉堵塞等问题,从而避免储层渗透率降低、产能损失或井壁失稳[1416]

    选择目标井的邻井地层水作为试验对象,总矿化度为35 795 mg/L,为NaHCO3水型。将高密度完井液与目标区块地层水按照9∶1、7∶3、5∶5、3∶7和1∶9的比例混合后,测量浊度;将配伍测试体系在80 ℃温度下老化24 h后,再次测量浊度(见表1)。从表1可以看出,完井液与地层水配伍性良好,溶液清澈透明,浊度均小于30 NTU。

    表  1  高密度完井液与地层水混合后的浊度
    Table  1.  Turbidity of high-density completion fluid mixed with formation water
    试验条件地层水与完井液体积比浊度/NTU
    25℃10∶012.51
    1∶914.40
    3∶713.12
    5∶54.68
    7∶33.44
    9∶11.66
    80 ℃ × 24 h10∶08.35
    1∶94.20
    3∶73.73
    5∶52.68
    7∶31.73
    9∶11.01
    下载: 导出CSV 
    | 显示表格

    因为目标井采用合成基钻井液作业,所以开展了合成基钻井液滤液和高密度完井液的配伍性测试。室内将合成基钻井液滤液和高密度完井液按照1∶1混合,观察是否乳化、生成沉淀等,以评价高密度完井液与合成基钻井液滤液的配伍性。观察发现:高密度完井液与合成基钻井液滤液混合后在80 ℃温度条件下放置24 h,分层明显,没有乳化后导致边界不清的现象发生,说明二者之间的配伍性良好,没有潜在的储层伤害风险。

    研究表明,高密度完井液的密度受温度的影响程度通常大于压力[17]。温度升高,会加剧分子热运动,导致体积膨胀,从而使密度降低,且这种变化随着温度不断升高而更为显著。相比之下,压力对密度的影响相对较小,因为高密度完井液在一定压力范围内的体积压缩程度有限[1821]。因此,高温深井中完井液的密度可能会因温度升高而显著降低,从而影响井筒压力的准确计算。为确保高密度完井液在高温高压条件下的性能稳定,施工前需测定其在不同地层温度和压力条件下的密度,以分析流体的体积收缩/膨胀特性,防范井控风险。

    采用高温高压流变仪GRACE8500的PVT测试模块,进行高密度无固相完井液的密度随温度和压力变化的试验。试验设备配备高精度传感器,可实时监测温度、压力和体积的变化,并通过软件计算实时密度。试验过程中,将配制好的高密度无固相完井液注入PVT测试腔体并密封。测试条件设置:温度为25~142 ℃(目标储层温度),压力为0.10~67.42 MPa(目标储层预测压力),且每个温度−压力测试点均对应实际井筒不同深度的温压状态的计算数值。试验分为升温、加压、稳定和数据采集4个阶段,通过逐步改变温度和压力,每间隔1 min采集一次数据,记录不同工况下完井液的密度,结果如图3所示。

    图  3  高密度完井液在不同温度/压力条件下的密度
    Figure  3.  Density of high-density completion fluid under different temperatures/pressures

    图3可以看出,常温下1.85 kg/L高密度完井液随着温度和压力升高,密度表现出微弱的降低趋势;当温度/压力达到142 ℃/67.42 MPa时,高密度完井液密度降至1.78 kg/L,密度变化率仅为3.8%,满足现场实际作业需求。

    高温高压井作业过程中,金属材料的腐蚀控制是制约高密度无固相完井液应用的关键技术瓶颈。高密度完井液在高温下往往会呈现更强烈的腐蚀性,同时在高压下盐水更容易渗透到金属表面的微小裂纹中,加速裂纹的扩展和金属的破坏。因此,高密度完井液中添加了可抗高温高盐的高效缓蚀剂,缓蚀剂分子可与腐蚀介质表面的生成物反应生成沉淀膜,阻止腐蚀反应的进一步发生。依据石油天然气行业标准《油田采出水用缓蚀剂性能评价方法》(SY/T 5273—2000)进行腐蚀性评价试验,选取哈氏合金腐蚀仪作为试验设备,通过对比腐蚀前后钢片质量变化来评价完井液的腐蚀性。在140 ℃温度条件下,将待测钢片浸泡于完井液中 7 d测其受腐蚀情况,结果见表2。从表2可以看出,高密度完井液具有优良的防腐效果,腐蚀速率均低于行业指标(0.076 mm/a),同时腐蚀后钢片表面光滑,无点蚀现象发生。

    表  2  高密度完井液腐蚀性的测试结果
    Table  2.  Corrosion test results of high-density completion fluid
    材质腐蚀前质量/g腐蚀后质量/g腐蚀速率/(mm·a−1
    S13Cr10.464 210.463 40.004 0
    N8011.280 811.268 30.063 2
    S13Cr10.427 310.425 70.008 1
    N8010.859 210.849 70.048 1
    下载: 导出CSV 
    | 显示表格

    研究完井液储层保护性能,首要任务是分析目标区块储层的潜在损害因素。水锁伤害是低渗、特低渗气藏最严重的损害因素之一,也是无固相高密度完井液最易发生的储层伤害方式[2224]。因此需要首先对目标区块进行水锁伤害程度评价。试验选用目标区块岩样,在140 ℃温度条件下,通过改变岩心中束缚水饱和度,模拟不同开发阶段储层的水锁伤害状态,从而量化分析水锁伤害对气相渗透率的影响程度。试验结果如图4所示。

    图  4  不同含水饱和度下气相的相对渗透率
    Figure  4.  Relative permeability of gas phase under different water saturation conditions

    图4可以看出:岩样1−2的初始气相渗透率为89.82 mD,束缚水饱和度为32.5%,随着含水饱和度升高,气相相对渗透率随之降低;含水饱和度高于70%时,气相相对渗透率急剧降低;含水饱和度达到78.8%时,气相渗透率损害率达100%,即岩样中的气被水相圈闭。岩样1−5的初始气相渗透率为28.60 mD,束缚水饱和度为34.2%;随着含水饱和度升高,气相相对渗透率随之降低;含水饱和度高于60%时,气相性相对渗透率急剧降低;含水饱和度达到80.4%时,气相渗透率损害率达到100%,即岩样中的气被水相圈闭,残余气饱和度19.6%。

    上述试验结果表明,水锁伤害程度与岩样原始渗透率呈明显的负相关性,即岩样原始渗透率越低,束缚水饱和度就越高;从整体来看,水锁伤害程度与束缚水饱和度呈正相关性,即岩样束缚水饱和度越高,水锁伤害程度越高。因此,实际作业时需要针对目标区块储层特征在完井液中加入防水锁剂,且加量应与目标区块储层渗透率相适应。

    高密度完井液中添加抗高温防水锁剂后,分别使用邻井井下岩心及人造岩心测试高密度完井液的储层保护性能。具体步骤为:1)选择目标井相邻区块天然岩样,测定岩样基础数据,抽真空饱和模拟地层水;2)在140℃试验温度条件下,使用氮气沿单一方向进行驱替,得到稳定的初始渗透率;3)反向注入2倍岩样孔隙体积的高密度完井液,在试验温度下静置2 h,模拟完井液污染过程;4)使用氮气沿初始渗透率驱替方向单一方向进行驱替,得到稳定的污染后渗透率,记录试验数据,并计算得到渗透率恢复率,结果见表3

    表  3  高密度完井液储层保护效果评价结果
    Table  3.  Evaluation results of reservoir protection effects of high-density completion fluid
    岩样编号 岩样来源  初始
    渗透率/mD
     完井液污染
    返排后渗透率/mD
     渗透率
    恢复率,%
    X−11 现场岩心 59.121 51.079 86.40
    4 人造岩心 35.498 31.764 89.48
    下载: 导出CSV 
    | 显示表格

    表3可以看出,岩样经高密度完井液污染后的渗透率恢复率均在85.0%以上,表明其具有良好的储层保护效果,满足现场作业要求。

    南海某气田位于南海北部琼东南盆地中央坳陷带中央峡谷的西段,区域水深约890~970 m。根据区域地层发育特征,钻遇地层从上到下依次为第四系乐东组,新近系上新统莺歌海组,中新统黄流组、梅山组,含气层主要位于黄流组、梅山组。该气田黄流组Ⅱ下、Ⅲ气组为正常压力系统,地层压力系数为1.173~1.184;黄流组Ⅱ上、Ⅳ、Ⅴ气组为异常高压系统,压力系数为1.240~1.838;梅山组为异常高压系统,压力系数1.742。该气田深水开发井井底温度145 ℃,黄流组孔隙度13.0%~24.2%(平均18.0%),渗透率1.8~338.0 mD(平均34.2 mD),以中孔、中渗储层为主,局部发育低渗储层;梅山组孔隙度16.0%~26.0%(平均22.6%),渗透率2.3~96.8 mD(平均37.9 mD),表现为中孔中渗的储层特征。

    应用井为高压生产井,完钻水平位移684.69 m,目的层温度138 ℃,压力系数1.74,完钻钻井液密度1.78 kg/L。根据目标井实际情况,地层压力系数附加0.07~0.15,选择密度1.81 kg/L的无固相高密度完井液,并加入防水锁剂,以减轻储层水锁伤害。预先在陆地配制好高密度完井液,为避免杂质离子干扰,使用淡水配制完井液,运输和作业过程中始终保持接触管线容器的洁净。配制好的完井液用5~10 μm的滤芯进行过滤处理,以除去有害固相,保护储层。

    配制好的高密度完井液过滤前密度为1.86 kg/L,pH值为3.3;调节密度并过滤后密度降至1.81 kg/L,pH值升至3.4,且过滤后的浊度小于30 NTU,表明液相中固相含量极低。

    无固相高密度完井液现场应用效果良好,保障了井控安全。施工期间完井液稳定性良好,长时间静止后性能稳定;入井前密度为1.81 kg/L,pH值为3.3,井口返出液密度1.81 kg/L,pH值微增至3.4,表明施工过程中完井液密度和pH值基本稳定,过滤后可重复利用。此外,完井液在施工过程中防腐性能良好,未发生井下工具腐蚀情况。该井实际产气量80×104 m3/d,超过配产气量60×104 m3/d。

    1)针对南海某高温高压井完井作业需求,通过优化复合盐种类及配比,并协同螯合稳定剂、抗高温缓蚀剂及防水锁剂,构建了具有低腐蚀性、高稳定性的无固相高密度完井液,为复杂作业环境下的深水井完井提供了新的技术途径。

    2)室内试验结果表明,该无固相高密度完井液最高达1.85 kg/L,高温条件下仍保持良好的稳定性;具有良好的天然气水合物抑制性能和较低的结晶点,与地层水和钻井液的配伍性良好;腐蚀速率小于0.076 mm/a,腐蚀后钢片表面光滑,无点蚀现象发生;具有良好的储层保护性能,气测渗透率恢复率大于85%。

    3)现场应用表明,入井前后完井液密度保持稳定,完井液性能参数在全井段保持稳定,未出现降解或性能劣化现象。同时,完井液对储层的潜在水锁损害风险小,投产后产气量超配产气量,表明该完井液可满足高温高压井完井作业需求。

  • 图  1   21世纪墨西哥湾井深超过9 000 m的完钻井数量

    Figure  1.   Number of drilled wells over 9 000 m in depth in Gulf of Mexico

    图  2   墨西哥湾典型万米级特深井钻井进度统计结果

    Figure  2.   Statistical results of drilling progress of typical 10 000-meter ultra-deep wells in Gulf of Mexico

    图  3   墨西哥湾深井及万米级特深井的套管层次

    Figure  3.   Casing level of deep wells and 10 000-meter ultra-deep wells in Gulf of Mexico

    图  4   墨西哥湾Green Canyon 468 Pony区块典型万米级特深井A井井身结构

    Figure  4.   Casing program of 10 000-meter ultra-deep well A in Green Canyon 468 Pony Area, Gulf of Mexico

    图  5   墨西哥湾万米级特深井完井方案优化设计流程

    Figure  5.   Optimization design process of completion plan for 10 000-meter ultra-deep wells in Gulf of Mexico

    表  1   越洋钻探公司深水钻井平台/钻井船关键装备性能参数

    Table  1   Key equipment performance parameters of TransOcean Deepwater Drilling Platform/Ship

    装备
    类型
    设备名称 性能参数
    动力
    装备
    柴油
    发电机
     4~6台,总功率20 000~48 000 kW,配合直流发电机驱动,主动力
     1~2台,总功率500~2 500 kW,配合直流发电机驱动,应急动力
    钻机
    装备
    钻机大钩  主载荷9 060~12 700 kN ,辅助载荷
    0~12 000 kN
    绞车  1~2台,载荷10 000~12 500 kN
    顶驱  NOV TD-100或TD125型,1~2台,最大钩载10 000~12 500 kN,最大转速250~280 r/min,最大连续输出扭矩88~137 kN·m,冲管承压上限51.6 MPa
    钻井泵  NOV 2200HP Triplex型,4~5 台,承压上限51.6 MPa
    高压管汇  承压上限51.6 MPa
    固控设备  2~6台300目振动筛,除砂除泥一体机,中高速离心机等
    防喷
    装备
    闸板
    防喷器
     NOV或Cameron公司五至七闸板防喷器1台,压力等级105 MPa
    环形
    防喷器
     NOV或Cameron公司环形防喷器2台,压力等级70 MPa
    下载: 导出CSV

    表  2   典型万米级特深井钻井应用的关键钻具

    Table  2   Key drilling tools used in typical 10 000-meter ultra-deep wells

    开次 井眼直径/
    mm
    垂深/m 关键钻具 最大
    井斜/(°)
    最大狗腿度/
    ((°)·(30m)−1)
    导管 762.0 0~2 224 螺杆 0.35 0.09
    一开 660.4 2 224~2 771 旋导 1.22 0.82
    二开 460.4×533.4 2 771~3 536 旋导+随钻扩眼工具 0.09 0.10
    三开 419.1×482.6 3 536~5 212 旋导+随钻扩眼工具 0.17 0.17
    四开 368.3×400.1 5 212~7 162 旋导+随钻扩眼工具 0.37 0.53
    五开 311.1×342.9 7 162~7 681 旋导+随钻扩眼工具 0.31 0.40
    六开 269.9 7 681~8 716 旋导 0.06 0.06
    下载: 导出CSV

    表  3   典型万米级特深井不同井段应用的钻杆

    Table  3   Drill pipes used in typical 10 000-meter ultra-deep wells at different sections

    开次 井眼直径/mm 井深/m 钻杆钢级 钻杆直径/mm
    导管
    一开 660.4 2743 S135 168.3
    二开 457.2×558.8 2743~3962 S135
    三开 419.1×508.0 3962~5790 S135
    四开 368.3×419.1 5790~7620 S135
    五开 311.1×342.9 7620~8230 S135 168.3+149.2
    六开 269.9×311.1 8230~8841 S135
    七开 215.9×250.8 8 841~10360 S135 168.3+149.2+139.7
    下载: 导出CSV

    表  4   多口典型万米级特深井不同尺寸井眼下的钻井参数

    Table  4   Drilling parameters used in wellbore with different sizes of typical 10 000-meter ultra-deep wells

    开次 地层 井眼直径/mm 钻具组合 井深/m 钻压/kN 转速/
    (r·min−1)
    扭矩/
    (kN·m)
    排量/
    (L·s−1)
    立压/
    MPa
    钻速/
    (m·h−1)
    一开 泥线—盐上 660.4 PDC钻头+旋导 2316~3383 40~70 150 13~23 82 28~30 25~33
    一开 泥线—盐上 660.4 复合钻头+旋导 2073~2438 40~70 150 6~13 74~88 18~21 76~127
    一开 盐膏层 660.4 复合钻头+旋导 2438~3048 260~280 150 40~47 75~88 21~25 38~40
    二开 盐膏层 419.1×558.8 PDC钻头+旋导+随钻扩眼工具 3718~5669 170~250 180 47~68 75 34~40 76~96
    二开 盐膏层 419.1 复合钻头+旋导 3048~6035 300~350 160 40~54 56 21~28 45~50
    三开 盐膏层 469.9×533.4 PDC钻头+随钻扩眼工具 5943~6401 140~250 150~160 54~67 30~38
    四开 盐下 250.8×269.9 复合钻头+随钻扩眼工具 7620~8839 130~250 130~180 20~50 30~33 30~35 12~20
    四开 盐下 250.8×269.9 复合钻头+随钻扩眼工具 7620~9144 130~250 110~140 25~44 36 27~35 12~54
    下载: 导出CSV
  • [1] 王兆明,温志新,贺正军,等. 全球近10年油气勘探新进展特点与启示[J]. 中国石油勘探,2022,27(2):27–37.

    WANG Zhaoming, WEN Zhixin, HE Zhengjun, et al. Characteristics and enlightenment of new progress in global oil and gas exploration in recent ten years[J]. China Petroleum Exploration, 2022, 27(2): 27–37.

    [2] 赵文智,窦立荣. 中国陆上剩余油气资源潜力及其分布和勘探对策[J]. 石油勘探与开发,2001,28(1):1–5.

    ZHAO Wenzhi, DOU Lirong. Potential, distribution and exploration strategy of petroleum resources remained onshore China[J]. Petroleum Exploration and Development, 2001, 28(1): 1–5.

    [3] 苏义脑,路保平,刘岩生,等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺,2020,42(5):527–542.

    SU Yinao, LU Baoping, LIU Yansheng, et al. Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5): 527–542.

    [4] 汪海阁,黄洪春,毕文欣,等. 深井超深井油气钻井技术进展与展望[J]. 天然气工业,2021,41(8):163–177. doi: 10.3787/j.issn.1000-0976.2021.08.015

    WANG Haige, HUANG Hongchun, BI Wenxin, et al. Deep and ultra-deep oil/gas well drilling technologies: progress and prospect[J]. Natural Gas Industry, 2021, 41(8): 163–177. doi: 10.3787/j.issn.1000-0976.2021.08.015

    [5] 汪海阁,黄洪春,纪国栋,等. 中国石油深井、超深井和水平井钻完井技术进展与挑战[J]. 中国石油勘探,2023,28(3):1–11.

    WANG Haige, HUANG Hongchun, JI Guodong, et al. Progress and challenges of drilling and completion technologies for deep, ultra-deep and horizontal wells of CNPC[J]. China Petroleum Exploration, 2023, 28(3): 1–11.

    [6]

    WEATHERL M H. GOM deepwater field development challenges at Green Canyon 468 Pony[R]. SPE 137220, 2010.

    [7] 赵阳,卢景美,刘学考,等. 墨西哥湾深水油气勘探研究特点与发展趋势[J]. 海洋地质前沿,2014,30(6):27–32.

    ZHAO Yang, LU Jingmei, LIU Xuekao, et al. Oil and gas exploration in deep water area of Gulf of Mexico[J]. Marine Geology Frontiers, 2014, 30(6): 27–32.

    [8]

    TAYLOR S, HINER M. Permanent borehole seismic in ultra deep offshore appraisal wells[R]. OTC 22580, 2011.

    [9]

    CUNHA J C, MOREIRA O, AZEVEDO G H, et al. Challenges on drilling and completion operations of deep wells in ultra-deepwater zones in the Gulf of Mexico[R]. SPE 125111, 2009.

    [10] 张兴文. 墨西哥湾盆地深部油气藏地质特征、形成条件及成藏模式[D]. 北京:中国石油大学(北京),2021.

    ZHANG Xingwen. Geological characteristics, formation conditions and accumulation models of deep and ultra-deep oil and gas in the Gulf of Mexico Basin[D]. Beijing: China University of Petroleum(Beijing), 2021.

    [11] 张兴文,庞雄奇,李才俊,等. 深层—超深层高孔高渗碎屑岩油气藏地质特征、形成条件及成藏模式:以墨西哥湾盆地为例[J]. 石油学报,2021,42(4):466–480.

    ZHANG Xingwen, PANG Xiongqi, LI Caijun, et al. Geological characteristics, formation conditions and accumulation model of deep and ultra-deep, high-porosity and high-permeability clastic reservoirs: a case study of Gulf of Mexico Basin[J]. Acta Petrolei Sinica, 2021, 42(4): 466–480.

    [12]

    CHAVEZ M A, GARCIA G A, POGOSON O, et al. Lower tertiary: a fully comprehensive well completion design methodology to overcome reservoir challenges[R]. SPE 165062, 2013.

    [13] 卢景美,张金川,严杰,等. 墨西哥湾北部深水区Wilcox沉积特征及沉积模式研究[J]. 沉积学报,2014,32(6):1132–1139.

    LU Jingmei, ZHANG Jinchuan, YAN Jie, et al. Study on depositional characteristics and model of Wilcox in the deep waters of northern Gulf of Mexico[J]. Acta Sedimentologica Sinica, 2014, 32(6): 1132–1139.

    [14] 何保生,张钦岳,冷雪霜. 墨西哥超深水盐下钻井技术及实践[J]. 中国海上油气,2021,33(6):101–109.

    HE Baosheng, ZHANG Qinyue, LENG Xueshuang. Ultra deepwater pre-salt drilling technologies and their practices in Mexico[J]. China Offshore Oil and Gas, 2021, 33(6): 101–109.

    [15] 张星星,黄小龙,严德,等. 墨西哥湾深水岩膏地层钻井实践[J]. 石油钻采工艺,2015,37(1):99–102.

    ZHANG Xingxing, HUANG Xiaolong, YAN De, et al. Drilling practices of deepwater salt rock stratum in Gulf of Mexico[J]. Oil Drilling & Production Technology, 2015, 37(1): 99–102.

    [16]

    MALDONADO B, ARRAZOLA A, MORTON B. Ultradeep HP/HT completions: classification, design methodologies, and technical challenges[R]. OTC 17927, 2006.

    [17]

    MATHUR R, SEILER N, SRINIVASAN A, et al. Opportunities and challenges of deepwater subsalt drilling[R]. SPE 127687, 2010.

    [18]

    KUNNING J, WU Yafei, THOMSON I J, et al. Non-retrievable rotating liner drilling system successfully deployed to overcome challenging highly stressed rubble zone in a GOM ultra-deepwater sub-salt application[R]. SPE 124854, 2009.

    [19]

    ALI T H, MATHUR R, SHARMA N. Build-to-suit technologies for wellbore construction in deepwater and ultradeepwater Gulf of Mexico[R]. SPE 136840, 2010.

    [20]

    CHAMAT E, ISRAEL R. Efficient and reliable vertical drilling of top holes with RSS in deepwater GOM[R]. SPE 151395, 2012.

    [21]

    PRASAD U, ROY CHOWDHURY A, ANDERSON M. Drilling mechanics analysis of record hybrid drill bit runs in Gulf of Mexico salt formation and its correlation with rock-mechanical properties of salt[R]. SPE 195860, 2019.

    [22]

    UBARU C, THOMSON I, RADFORD S. Drilling and under-reaming in the GOM deepwater ultradeep lower tertiary: history of a record run in the world’s deepest oil or gas well[R]. SPE 145259, 2011.

    [23]

    BARKER J W. Wellbore design with reduced clearance between casing strings[R]. SPE 37615, 1997.

    [24]

    ROSENBERG S M, GALA D M. Liner drilling technology as a tool to reduce NPT-Gulf of Mexico experiences[R]. SPE 146158, 2011.

    [25]

    YI Xianjie, CORBIN K, DAVIS J, et al. Solving deepwater GoM pore pressure puzzle: multiple activation reamer eliminates trip prior to running coring bottomhole assembly[R]. SPE 167916, 2014.

    [26]

    FILIPPOV A, MACK R, COOK L, et al. Expandable tubular solutions[R]. SPE 56500, 1999.

    [27]

    BULLOCK M, RUZIC N, PEREZ M, et al. High performance solid expandables for deepwater[R]. SPE 170257, 2014.

    [28]

    TOUBOUL N, WOMBLE L, KOTRLA J, et al. New technologies combine to reduce drilling costs in ultradeepwater applications[R]. SPE 90830, 2004.

    [29]

    NYLUND J, FLAMING S, MITRUSHI K. Power of design: solid expandable installation sets multiple new records in deepshelf HP/HT well[R]. SPE 128366, 2010.

    [30]

    CRUZ E J, BAKER R V, YORK P, et al. Mitigating sub-salt rubble zones using high collapse, cost effective solid expandable Monobore systems[R]. OTC 19008, 2007.

    [31]

    SIDDIQUI A A, KARIMI M. Including enabling technologies in the wellbore construction basis of design: smart strategy to benefit from casing while drilling, open-hole expandable liners, and liner drilling[R]. OTC 24089, 2013.

    [32]

    WHITSON C D, MCFADYEN M K. Lessons learned in the planning and drilling of deep, subsalt wells in the deepwater Gulf of Mexico[R]. SPE 71363, 2001.

    [33]

    MOYER M C, LEWIS S B, COTTON M T, et al. Challenges associated with drilling a deepwater, subsalt exploration well in the Gulf of Mexico: Hadrian prospect[R]. SPE 154928, 2012.

    [34]

    SHAUGHNESSY J, DAUGHERTY W, GRAFF R, et al. More ultra-deepwater drilling problems[R]. SPE 105792, 2007.

    [35]

    WILLIAMS C, MASON J S, SPAAR J. Operational efficiency on eight-well sidetrack program saves $7.3 million vs historical offsets in MP 299/144 GOM[R]. SPE 67826, 2001.

    [36]

    SOARES C, ARMENTA M, PANCHAL N. Enhancing reamer drilling performance in deepwater Gulf of Mexico wells[J]. SPE Drilling & Completion, 2020, 35(3): 329–356.

    [37]

    ROY CHOWDHURY A, SERRANO R, RODRIGUE W. Pilot bit and reamer matching: real-time downhole data differentiates hybrid drill bit’s suitability with concentric reamer in deepwater, Gulf of Mexico application[R]. SPE 194060, 2019.

    [38]

    EDWARDS H, VAN NOORT R, CLAIRMONT B, et al. Modeling system improves salt drilling technique with concentric reamer/RSS, deepwater GoM[R]. SPE 158920, 2012.

    [39]

    JELLISON M, CHANDLER R B, LANGDON S, et al. Deepwater and critical drilling with new connection technology: case histories and lessons learned[R]. SPE 133857, 2010.

    [40]

    ROHLEDER S A, SANDERS W W, WILLIAMSON R N, et al. Challenges of drilling an ultra-deep well in deepwater: Spa Prospect[R]. SPE 79810, 2003.

    [41]

    D'AMBROSIO P, PROCHASKA E, BOUSKA R, et al. Cost effective ultra-large diameter PDC bit drilling in deepwater Gulf of Mexico[R]. SPE 163448, 2013.

    [42]

    RAMIREZ S, AGUILAR R, GONZALEZ L F, et al. Evolution of rotary steerable BHA designs in Mexico offshore: solution to stop multiple drillstring failures in high-vibration environment[R]. SPE 138963, 2010.

    [43]

    DYKSTRA M W, ARMENTA M A, AIN F A M, et al. Converting power to performance: Gulf of Mexico examples of an optimization workflow for bit selection, drilling system design and operation[R]. OTC 29065, 2018.

    [44]

    CHOWDHURY A R, CALLAIS R, ROTHE M, et al. Mitigating salt and sub-salt drilling challenges using hybrid bit technology in deepwater, Gulf of Mexico[R]. SPE 180342, 2016.

    [45]

    HAVARD K, DURAIRAJAN B, STITH S, et al. Collaborative bit and reamer design solution for performance drilling in salt and high durability in challenging subsalt interval in one run, deepwater Gulf of Mexico[R]. OTC 29783, 2019.

    [46] 韩天旺. 双梯度钻井条件下深水井身结构设计优化研究[D]. 北京:中国石油大学(北京),2020.

    HAN Tianwang. Optimal design of deepwater well structure with dual gradient drilling technology[D]. Beijing: China University of Petroleum (Beijing), 2020.

    [47]

    HARIHARAN P R, JUDGE R A. The economic analysis of a two-rig approach to drill in deepwater Gulf of Mexico using dual gradient pumping technology[R]. SPE 84272, 2003.

    [48]

    SCHUBERT J J, JUVKAM-WOLD H C, CHOE J. Well-control procedures for dual gradient drilling as compared to conventional riser drilling[J]. SPE Drilling & Completion, 2006, 21(4): 287–295.

    [49]

    ZIEGLER R, SABRI M S, IDRIS M R, et al. First successful commercial application of dual gradient drilling in ultra-deepwater GOM[R]. SPE 166272, 2013.

    [50]

    DOWELL J D. Deploying the world’s first commercial dual gradient drilling system[R]. SPE 137319, 2010.

    [51]

    STAVE R. Implementation of dual gradient drilling[R]. OTC 25222, 2014.

    [52]

    ZIEGLER R. Dual gradient drilling is ready for primetime: the benefits of a retrofit system for better well control, enhanced water depth capability and flat time reduction[R]. OTC 25267, 2014.

    [53]

    CHUSTZ M J, MAY J, WALLACE C, et al. Managed-pressure drilling with dynamic annular pressure-control system proves successful in redevelopment program on auger TLP in deepwater Gulf of Mexico[R]. SPE 108348, 2007.

    [54]

    RAMIREZ S, AGUILAR R, HERRERA R, et al. First MPD automated system application in offshore Gulf of Mexico well confirms method, huge benefits[R]. SPE 138907, 2010.

    [55]

    SAMUEL N, SANTOS H, VALLURI S. First deepwater MPD operation in the Gulf of Mexico: challenges and lessons learned[R]. SPE 180324, 2016.

    [56]

    HERNANDEZ J, ARNONE M, VALECILLOS J, et al. Using managed pressure drilling and early kick/loss detection system to execute a challenging deepwater completions job in the Gulf of Mexico[R]. SPE 194554, 2019.

    [57]

    TEOH M, MOGHAZY S, SMELKER K, et al. Managed pressure cementing MPC within a narrow pressure window, deepwater Gulf of Mexico application[R]. SPE 194536, 2019.

    [58]

    VACZI K, MORALES D, CHIMA C. Implementation of MPD systems in the deepwater Gulf of Mexico to drill highly depleted reservoir sections[R]. SPE 208771, 2022.

    [59]

    TUCKWELL N, NABIYEV A, PARKER M, et al. MPD during the global pandemic in the Gulf of Mexico: how virtual meetings, planning, and communication facilitated a safe and successful implementation of CBHP MPD[R]. SPE 206392, 2021.

    [60]

    TUCKWELL N, ARNONE M. Real-time downhole pressure environment determination during managed pressure drilling, tripping, and cementing operations to improve well construction safety standards in deepwater Gulf of Mexico[R]. SPE 210541, 2022.

    [61]

    ARMENTA M, DYKSTRA M, MUESEL J, et al. Delivering best in class ROP performance by pushing the operational envelope with novel advanced bit designs[R]. SPE 191730, 2018.

    [62]

    RAHMANI R, OMIDVAR N, HANLEY C. Novel drill bit technology combined with system matcher increases torque efficiency and reduces stick-slip and vibrations[R]. SPE 189671, 2018.

    [63]

    ROY CHOWDHURY A, SERRANO R, MARTIN B, et al. Self-adaptive depth of cut control technology: a path-breaking approach to address torsional dysfunction and securing drilling performance gain in challenging deepwater Gulf of Mexico well[R]. SPE 191510, 2018.

    [64]

    RODRIGUE W, CALLAIS R, ROY CHOWDHURY A. Self-adjusting PDC bits reduce drilling dysfunction, increase drilling efficiency in Gulf of Mexico wells[R]. SPE 194128, 2019.

    [65]

    CHOWDHURY A R, CALLAIS R, RODRIGUE W, et al. Meeting the large-diameter drilling challenges and securing sustainable performance gains using hybrid bit technology in deepwater Gulf of Mexico[R]. SPE 187052, 2017.

    [66]

    MCCARTHY J, KABBARA A, BURNETT T, et al. Careful planning and application of an asymmetric vibration damping tool dramatically improves underreaming while drilling performance in deepwater drilling[R]. SPE 156164, 2012.

    [67]

    GAINES M, MORRISON R D, HERRINGTON D. Step change drilling technology modifies drill string dynamics and results in reduced drilling vibrations[R]. SPE 166445, 2013.

    [68]

    AMORIM D, HANLEY C, LEITE D J. BHA selection and parameter definition using vibration prediction software leads to significant drilling performance improvements[R]. SPE 152231, 2012.

    [69]

    COMPTON M, VERANO F, NELSON G, et al. Managing downhole vibrations for hole-enlargement-while-drilling in deepwater environment: a proven approach utilizing drillstring dynamics model[R]. SPE 139234, 2010.

    [70]

    ALGU D R, DENHAM W, NELSON G, et al. Maximizing hole enlargement while drilling (HEWD) performance with state-of-the-art BHA dynamic analysis program and operation road map[R]. SPE 115607, 2008.

    [71]

    PLUTT L A J, PERE A L, PARDO N O, et al. Achieving improved performance through drilling optimization and vibration management at a GoM development project[R]. SPE 119299, 2009.

    [72]

    PEREIRA R, CARDOZO J, BOGAERTS M, et al. Use of surfactant in cement slurry to mitigate incompatibility with synthetic-based drilling fluids[R]. OTC 27902, 2017.

    [73]

    DIEFFENBAUGHER J, DUPRE R, AUTHEMENT G, et al. Drilling fluids planning and execution for a world record water depth well[R]. SPE 92587, 2005.

    [74]

    JAIMES J P, CROY S, BOUGUETTA M, et al. Drilling fluids design and field deployment for the first HTHP deepwater production project in the US Gulf of Mexico[R]. SPE 208668, 2022.

    [75]

    MCBEE J, EVANS B, UMBHER K. Lessons learned on Gulf of Mexico gas wells drilled with OBM and completed with heavy brine[R]. SPE 109589, 2007.

    [76]

    VAN OORT E, LEE J, FRIEDHEIM J, et al. New flat-rheology synthetic-based mud for improved deepwater drilling[R]. SPE 90987, 2004.

    [77]

    CLAPPER D K, SZABO J J, SPENCE S, et al. One sack rapid mix and pump solution to severe lost circulation[R]. SPE 139817, 2011.

    [78]

    DARUGAR Q A, SZABO J J, CLAPPER D K, et al. Single-sack fibrous pill treatment for high fluid loss zones[R]. SPE 149120, 2011.

    [79]

    VAN OORT E, FRIEDHEIM J, PIERCE T, et al. Avoiding losses in depleted and weak zones by constantly strengthening wellbores[J]. SPE Drilling & Completion, 2011, 26(4): 519–530.

    [80]

    OAKLEY D, CONN L. Drilling fluid design enlarges the hydraulic operating windows of managed pressure drilling operations[R]. SPE 139623, 2011.

    [81]

    KAMGANG S, PIERRE A, NEUPANE R, et al. Cement evaluation case studies; application of multiphysics measurements to address different challenges in deepwater Gulf of Mexico environment[R]. OTC 31601, 2022.

    [82]

    O’LEARY J, FLORES J C, RUBINSTEIN P, et al. Cementing deepwater, low-temperature Gulf of Mexico formations prone to shallow flows[R]. SPE 87161, 2004.

    [83]

    DIARRA R, BOGAERTS M, ANDREWS H, et al. Low-temperature dispersant improves cement slurry properties in deepwater operations[R]. OTC 27534, 2017.

    [84]

    FULLER G A, BOLADO D, HARDY F, et al. A Gulf of Mexico case history: benefits of foamed cementing to combat a SWF[R]. SPE 128160, 2010.

    [85]

    FAUL R, REDDY B R, GRIFFITH J, et al. Next-generation cementing systems to control shallow water flow[R]. OTC 11977, 2000.

    [86]

    ASLAKSON J, DOHERTY D, SMALLEY E. Preventing annular flow after cementing, one pulse at a time: offshore Gulf of Mexico cement pulsation field results[R]. SPE 94230, 2005.

    [87]

    VALLEJO V, OLIVARES A, SALINAS D, et al. Ultra deepwater salt zone cementing in Gulf of Mexico wells[R]. OTC 27960, 2017.

    [88]

    ZHANG Jincai, STANDIFIRD W, LENAMOND C. Casing ultradeep, ultralong salt sections in deep water: a case study for failure diagnosis and risk mitigation in record-depth well[R]. SPE 114273, 2008.

    [89]

    HUNTER B, TAHMOURPOUR F, FAUL R. Cementing casing strings across salt zones: an overview of global best practices[J]. SPE Drilling & Completion, 2010, 25(4): 426–437.

    [90]

    BOGAERTS M, CARDOZO J, FLAMANT N, et al. Novel 3D fluid displacement simulations improve cement job design and planning in the Gulf of Mexico[R]. SPE 196077, 2019.

    [91]

    DOOPLY M, SIANIPAR S, RODRIGUEZ F, et al. Overcoming tight annulus cementing design challenges: Gulf of Mexico case study[R]. SPE 189687, 2018.

    [92]

    CONTRERAS J, BOGAERTS M, GRIFFIN D, et al. Real-time monitoring and diagnoses on deepwater cement barrier placement: case studies from the Gulf of Mexico and Atlantic Canada[R]. OTC 27797, 2017.

    [93]

    DUSSEAULT M B, MAURY V, SANFILIPPO F, et al. Drilling through salt: constitutive behavior and drilling strategies[R]. ARMA-04-608, 2004.

    [94]

    SALEH S, WILLIAMS K E, RIZVI A. Rubble zone below salt: identification and best drilling practices[R]. SPE 166115, 2013.

    [95]

    VICEER S, ALBERTIN M L, VINSON G, et al. Improving drilling efficiency using a look-ahead VSP to predict pressure, exiting salt: five Gulf of Mexico examples[R]. OTC 18262, 2006.

    [96]

    HAN Gang, HUNTER K C, OSMOND J, et al. Drilling through bitumen in Gulf of Mexico: the shallower vs the deeper[R]. OTC 19307, 2008.

    [97]

    HAN Gang, HUNTER K, RESSLER J, et al. Deepwater bitumen drilling: what happened downhole?[R]. SPE 111600, 2008.

    [98]

    HAN Gang, OSMOND J, ZAMBONINI J. A $100MM “rock”: Bitumen in the deepwater Gulf of Mexico[R]. ARMA-09-010, 2009.

    [99]

    RICH D, ROGERS B, DYSON W, et al. GoM deepwater completions: the devil is in the details[R]. OTC 20399, 2010.

    [100]

    MILLHEIM K, WILLIAMS T E, YEMINGTON C R. Evaluation of well testing systems for three deepwater Gulf of Mexico (GOM) reservoir types[R]. SPE 145682, 2011.

    [101]

    SANFORD J R, CORDEDDU C, EDWARDS W J, et al. Subsea slimhole completions in deepwater Gulf of Mexico: case histories[R]. SPE 110359, 2007.

    [102]

    TECHENTIEN B, GRIGSBY T, FROSELL T. Current state of the one-trip multizone sand control completion system and the conundrum faced in the Gulf of Mexico lower tertiary[R]. OTC 27183, 2016.

    [103]

    DUSTERHOFT R, STROBEL M, SZATNY M. An automated software workflow to optimize Gulf of Mexico Lower Tertiary Wilcox sand reservoirs[R]. SPE 151754, 2012.

    [104]

    BURGER R, GRIGSBY T, ROSS C, et al. Single-trip multiple-zone completion technology has come of age and meets the challenging completion needs of the Gulf of Mexico’s deepwater lower tertiary play[R]. SPE 128323, 2010.

    [105]

    TECHENTIEN B, INGRAM S, GROSSMANN A. The future state of completions for the lower tertiary in the Gulf of Mexico[R]. OTC 27203, 2016.

    [106]

    OGIER K S, HADDAD Z, MOREIRA O, et al. The world’s deepest frac-pack completions using a single-trip multi-zone system: a Gulf of Mexico case study in the Lower Tertiary Formation[R]. SPE 147313, 2011.

    [107] 刘岩生,张佳伟,黄洪春. 中国深层—超深层钻完井关键技术及发展方向[J]. 石油学报,2024,45(1):312–324.

    LIU Yansheng, ZHANG Jiawei, HUANG Hongchun. Key technologies and development direction for deep and ultra-deep drilling and completion in China[J]. Acta Petrolei Sinica, 2024, 45(1): 312–324.

    [108] 陈宗琦,刘湘华,白彬珍,等. 顺北油气田特深井钻井完井技术进展与发展思考[J]. 石油钻探技术,2022,50(4):1–10.

    CHEN Zongqi, LIU Xianghua, BAI Binzhen, et al. Technical progress and development consideration of drilling and completion engineering for ultra-deep wells in the Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(4): 1–10.

    [109]

    HAHN D, ATKINS M, RUSSELL J, et al. Gulf of Mexico shelf deep ultra HPHT completions-current technology gaps[R]. SPE 97560, 2005.

    [110]

    SANDERS W, BAUMANN C E, WILLIAMS H A R, et al. Efficient perforation of high-pressure deepwater wells[R]. OTC 21758, 2011.

    [111]

    BAUMANN C, BARNARD K, WILLIAMS H. Gunshock risk evaluation when perforating high pressure wells[R]. SPE 159119, 2012.

    [112]

    BRINSDEN M, GAVRIC Z, LE C, et al. Perforating the largest high-pressure wells in the Gulf of Mexico[R]. OTC 26644, 2016.

  • 期刊类型引用(7)

    1. 孔安栋,杨德旺,郭金家,伍璐琭,燕傲霜,周发举,万亚旗. 腔增强气体拉曼光谱仪在气测录井中的应用. 光学精密工程. 2022(10): 1151-1159 . 百度学术
    2. 智茂轩. 乙烯裂解气组成在线分析方法的研究及应用进展. 石油化工. 2021(06): 622-626 . 百度学术
    3. 马维喆,董美蓉,黄泳如,童琪,韦丽萍,陆继东. 激光诱导击穿光谱的飞灰碳含量定量分析方法. 红外与激光工程. 2021(09): 201-210 . 百度学术
    4. 董美蓉,韦丽萍,张勇升,陆继东. LIBS结合主导因素偏差修正的燃煤氢元素定量分析. 中国电机工程学报. 2020(20): 6617-6625 . 百度学术
    5. 杨志强,佘明军,李油建. 激光在线识别岩性技术的影响因素分析与处理. 录井工程. 2019(02): 74-78+135 . 百度学术
    6. 杨志强,李光泉,佘明军. 基于激光诱导击穿光谱的岩屑岩性在线识别试验研究. 石油钻探技术. 2019(04): 122-126 . 本站查看
    7. 万利,佘明军,邢允杰. 油基钻井液条件下的激光岩屑录井技术. 长江大学学报(自然科学版). 2019(12): 25-27+6 . 百度学术

    其他类型引用(4)

图(5)  /  表(4)
计量
  • 文章访问数:  431
  • HTML全文浏览量:  151
  • PDF下载量:  223
  • 被引次数: 11
出版历程
  • 收稿日期:  2024-03-07
  • 录用日期:  2024-03-31
  • 网络出版日期:  2024-04-07
  • 刊出日期:  2024-04-02

目录

/

返回文章
返回