Key Technologies for Enhancing the Drilling Speed of Fault Block Shale Oil Horizontal Wells in Subei Basin
-
摘要:
苏北盆地阜二段页岩油水平井施工时存在井身结构设计有待优化、井壁稳定性差、井眼轨迹控制难度大及井控风险高等提速难题。为解决这些问题,基于地质−工程一体化,进行了井身结构及井眼轨道优化、PDC钻头个性化设计及钻具组合优选的分层提速技术、定−测−录−导一体化的钻遇断层井眼轨迹控制技术研究,并集成强化钻井参数、减摩降扭提速、强封堵白油基钻井液和双密度钻井液精细控压防压窜安全钻井等配套技术,形成了苏北断块页岩油水平井钻井提速关键技术。苏北断块5口页岩油水平井应用该技术后,钻井周期大幅缩短,平均机械钻速由7.19 m/h提至16.47 m/h。研究表明,苏北断块页岩油水平井钻井提速关键技术满足该断块页岩油水平井钻井提速需求,为该断块页岩油效益规模开发提供了技术支撑。
Abstract:During the operation of shale oil horizontal wells in the second section of Funing Formation in Subei Basin, problems occur such as casing program await to be optimized, poor wellbore stability, difficulty in well trajectory control, and high well control risks, etc. Therefore, based on integration of geology and engineering, a layered speed-up technology was developed, including casing programs and well trajectory optimization, polycrystalline diamond compact (PDC) drill bit personalization design, and an optimal bottom hole assembly (BHA) selection. In addition, a well trajectory control technology for encountering fault during drilling that integrates directional drilling, logging, and steering was studied. The supporting technologies such as enhanced parameter drilling, friction and torque reduction for speed-up, white oil-based drilling fluid for strong sealing, and double-density drilling fluid for fine pressure control, and safety drilling with anti-channeling induced by pressure were developed. As a result, the key technologies for enhancing the drilling speed of fault block shale oil horizontal wells in Subei Basin were formed. These technologies were applied in five shale oil horizontal wells. As a result, the drilling cycle was greatly shortened, and the average rate of penetration (ROP) increased from 7.19 m/h to 16.47 m/h. The research results show that these technologies meet the drilling speed-up requirements for shale oil horizontal wells and provide technical support for the efficient and large-scale development of the shale oil.
-
-
表 1 苏北盆地页岩油水平井优化前后的井身结构
Table 1 Casing program optimization of shale oil horizontal wells in Subei Basin
开次 优化前 优化后 导管 ϕ406.4 mm钻头×260 m ϕ339.7 mm导管×259 m
(封固东台组)一开 ϕ444.5 mm钻头×580 m ϕ311.1 mm钻头×2 500 m ϕ339.7 mm套管×579 m
(封固盐城组上部)ϕ244.5 mm套管×2 498 m
(封固戴南组上部)二开 ϕ311.1 mm钻头×3 780 m ϕ215.9 mm钻头×6 012 m ϕ244.5 mm套管×3 778 m
(封固阜宁组四尖峰)ϕ139.7 mm套管×6 010 m 三开 ϕ215.9 mm钻头×5 785 m ϕ139.7 mm套管×5 780 m 表 2 苏北盆地页岩油水平井井眼轨道优化效果对比
Table 2 Comparison of well trajectory optimization effects of shale oil horizontal wells in Subei Basin
剖面类型 井深/m 造斜点/m 定向段长度/m 摩阻/kN 扭矩/(kN·m) 常规三维 6 056 3 150 757 290~380 24.3 双二维 6 030 1 000 906 308~370 25.6 二维+小三维 6 012 2 550 743 286~360 24.6 表 3 苏北盆地页岩油水平井分段强化钻井参数
Table 3 Enhanced drilling parameters for shale oil horizontal wells segmentations in Subei Basin
井眼直径/mm 井段 钻压/kN 螺杆转速/(r·min−1) 排量/(L·s−1) 泵压/MPa 311.1 60~160 80 55~65 30 215.9 直井+造斜段 60~120 80 32~36 28 造斜段 100~140 80 32~35 30 水平段 100~140 80 32~35 35 表 4 白油基钻井液与常规钻井液密度的对比
Table 4 Density comparison between white oil-based drilling fluid and conventional drilling fluid
井号 井深/m 钻井液体系 钻遇地层 实钻钻井液密度/(kg·L−1) 备注 花页1 3 810 钾基 E1f4—E1f1 1.58 密度最大降低0.18 kg/L 花页1HF 5 785 白油基 E1f2 1.39~1.40 花2侧 3 680 钾基 E1f1 1.48~1.50 密度最大降低0.15 kg/L 花2侧HF 4 650 白油基 E1f1 1.33~1.43 表 5 白油基钻井液与常规钻井液摩阻扭矩的对比
Table 5 Comparison of drag and torque between white oil-based drilling fluid and conventional drilling fluid
钻井液 上提悬重/kN 下放悬重/kN 上提摩阻/kN 下放摩阻/kN 扭矩/(kN·m) 钾基钻井液 1680.0 1458.0 342.5 224.4 196.8 白油基钻井液 1200.0 1080.0 250.0 170.0 160.0 表 6 钻井提速关键技术的应用效果
Table 6 Comparison of application effects of key technologies for drilling speed-up
井类型 井号 完钻井深/m 水平段长度/m 钻井周期/d 平均机械钻速/(m·h−1) 应用井 花页3HF 5 890 1 901 51.40 10.36 花页5HF 5 393 1 637 50.77 15.96 花页1−1HF 6 012 2 039 33.81 17.08 花页4−1HF 5 143 1 599 28.20 19.60 花页4−2HF 5 700 1 978 29.54 18.34 对比井 花页1HF 5 785 1 393 90.74 7.19 -
[1] 张锦宏. 中国石化页岩油工程技术现状与发展展望[J]. 石油钻探技术,2021,49(4):8–13. ZHANG Jinhong. Present status and development prospects of Sinopec shale oil engineering technologies[J]. Petroleum Drilling Techniques, 2021, 49(4): 8–13.
[2] 王敏生,光新军,耿黎东. 页岩油高效开发钻井完井关键技术及发展方向[J]. 石油钻探技术,2019,47(5):1–10. WANG Minsheng, GUANG Xinjun, GENG Lidong. Key drilling/completion technologies and development trends in the efficient development of shale oil[J]. Petroleum Drilling Techniques, 2019, 47(5): 1–10.
[3] 夏宏泉,赖俊,李高仁,等. 基于测井资料的页岩油储层甜点预测[J]. 西南石油大学学报(自然科学版),2021,43(4):199–207. XIA Hongquan, LAI Jun, LI Gaoren, et al. Sweet spot prediction of shale oil reservoir based on logging data[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(4): 199–207.
[4] 郭贵安,唐青松,蒋裕强,等. 夹层型页岩油突破及其油气地质意义:以四川盆地中部G119H井为例[J]. 天然气工业,2024,44(3):53–63. GUO Gui’an, TANG Qingsong, JIANG Yuqiang, et al. Exploration breakthrough of sandwiched shale oil in Sichuan Basin and its gas-oil geological implications: taking Well G119H in the central Sichuan Basin as an example[J]. Natural Gas Industry, 2024, 44(3): 53–63.
[5] 袁建强. 济阳坳陷页岩油多层立体开发关键工程技术[J]. 石油钻探技术,2023,51(1):1–8. YUAN Jianqiang. Key engineering technologies for three-dimensional development of multiple formations of shale oil in Jiyang Depression[J]. Petroleum Drilling Techniques, 2023, 51(1): 1–8.
[6] 秦春,刘纯仁,陈文可,等. 苏北盆地HY1HF井钻完井关键技术[J]. 复杂油气藏,2022,15(3):17–23. QIN Chun, LIU Chunren, CHEN Wenke, et al. Key technologies for drilling and completion of HY 1HF in Subei Basin[J]. Complex Hydrocarbon Reservoirs, 2022, 15(3): 17–23.
[7] 杨灿,王鹏,饶开波,等. 大港油田页岩油水平井钻井关键技术[J]. 石油钻探技术,2020,48(2):34–41. YANG Can, WANG Peng, RAO Kaibo, et al. Key technologies for drilling horizontal shale oil wells in the Dagang Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 34–41.
[8] 王春伟,杜焕福,董佑桓,等. 泌阳凹陷页岩油水平井随钻定测录导一体化模式探索[J]. 断块油气田,2024,31(3):424–431. WANG Chunwei, DU Huanfu, DONG Youhuan, et al. Exploration of ‘directing, logging, mud-logging, steering’ integration model while drilling for shale oil horizontal wells in Biyang Depression[J]. Fault-Block Oil & Gas Field, 2024, 31(3): 424–431.
[9] 田启忠,戴荣东,王继强,等. 胜利油田页岩油丛式井提速提效钻井技术[J]. 石油钻采工艺,2023,45(4):404–409. TIAN Qizhong, DAI Rongdong, WANG Jiqiang, et al. An efficient and fast shale oil cluster well drilling technology for Shengli Oilfield[J]. Oil Drilling & Production Technology, 2023, 45(4): 404–409.
[10] 赵波,陈二丁. 胜利油田页岩油水平井樊页平1井钻井技术[J]. 石油钻探技术,2021,49(4):53–58. ZHAO Bo, CHEN Erding. Drilling technologies for horizontal shale oil Well Fan Yeping 1 in the Shengli Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 53–58.
[11] 韩来聚,杨春旭. 济阳坳陷页岩油水平井钻井完井关键技术[J]. 石油钻探技术,2021,49(4):22–28. doi: 10.11911/syztjs.2021073 HAN Laiju, YANG Chunxu. Key technologies for drilling and completion of horizontal shale oil wells in the Jiyang Depression[J]. Petroleum Drilling Techniques, 2021, 49(4): 22–28. doi: 10.11911/syztjs.2021073
[12] 田增艳,杨贺卫,李晓涵,等. 大港油田页岩油水平井钻井液技术[J]. 石油钻探技术,2021,49(4):59–65. doi: 10.11911/syztjs.2021012 TIAN Zengyan, YANG Hewei, LI Xiaohan, et al. Drilling fluid technology for horizontal shale oil wells in the Dagang Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 59–65. doi: 10.11911/syztjs.2021012
[13] 吴继伟,袁丹丹,席传明,等. 吉木萨尔页岩油水平井钻井技术实践[J]. 钻采工艺,2021,44(3):24–27. WU Jiwei, YUAN Dandan, XI Chuanming, et al. Drilling technologies for shale horizontal wells in Jimsar[J]. Drilling & Production Technology, 2021, 44(3): 24–27.
[14] 席传明,史玉才,张楠,等. 吉木萨尔页岩油水平井JHW00421井钻完井关键技术[J]. 石油钻采工艺,2020,42(6):673–678. XI Chuanming, SHI Yucai, ZHANG Nan, et al. Key technologies for the drilling and completion of shale oil horizontal Well JHW00421 in Jimusaer[J]. Oil Drilling & Production Technology, 2020, 42(6): 673–678.
[15] 李玉海,李博,柳长鹏,等. 大庆油田页岩油水平井钻井提速技术[J]. 石油钻探技术,2022,50(5):9–13. LI Yuhai, LI Bo, LIU Changpeng, et al. ROP improvement technology for horizontal shale oil wells in Daqing Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(5): 9–13.
[16] 倪华峰,杨光,张延兵. 长庆油田页岩油大井丛水平井钻井提速技术[J]. 石油钻探技术,2021,49(4):29–33. NI Huafeng, YANG Guang, ZHANG Yanbing. ROP improvement technologies for large-cluster horizontal shale oil wells in the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 29–33.
[17] 迟建功. 大庆古龙页岩油水平井钻井技术[J]. 石油钻探技术,2023,51(6):12–17. CHI Jiangong. Drilling technologies for horizontal wells of Gulong shale oil in Daqing[J]. Petroleum Drilling Techniques, 2023, 51(6): 12–17.
[18] 王中华. 国内钻井液技术现状与发展建议[J]. 石油钻探技术,2023,51(4):114–123. WANG Zhonghua. Current situation and development suggestions for drilling fluid technologies in China[J]. Petroleum Drilling Techniques, 2023, 51(4): 114–123.
[19] 韩正波,刘厚彬,张靖涛,等. 深层脆性页岩力学性能及井壁稳定性研究[J]. 特种油气藏,2020,27(5):167–174. doi: 10.3969/j.issn.1006-6535.2020.05.026 HAN Zhengbo, LIU Houbin, ZHANG Jingtao, et al. Research on the mechanical properties and borehole stability of deep brittle shale[J]. Special Oil & Gas Reservoirs, 2020, 27(5): 167–174. doi: 10.3969/j.issn.1006-6535.2020.05.026
[20] 孙欢,朱明明,王伟良,等. 长庆页岩油水平井华H90−3井超长水平段防漏堵漏技术[J]. 石油钻探技术,2022,50(2):16–21. SUN Huan, ZHU Mingming, WANG Weiliang, et al. Lost circulation prevention and plugging technologies for the ultra-long horizontal section of the horizontal shale oil Well Hua H90-3 in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 16–21.
[21] 李科,贾江鸿,于雷,等. 页岩油钻井漏失机理及防漏堵漏技术[J]. 钻井液与完井液,2022,39(4):446–450. LI Ke, JIA Jianghong, YU Lei, et al. Mechanisms of lost circulation and technologies for mud loss prevention and control in shale oil drilling[J]. Drilling Fluid & Completion Fluid, 2022, 39(4): 446–450.
-
期刊类型引用(1)
1. 陈斌. 对大斜度大位移定向井岩屑录井技术的相关研究. 信息系统工程. 2019(08): 152 . 百度学术
其他类型引用(0)