BH−VDT3000垂直钻井系统研制与现场试验

黄峰, 陈世春, 刘立超, 郭超, 刘义彬, 史玉才

黄峰,陈世春,刘立超,等. BH−VDT3000垂直钻井系统研制与现场试验[J]. 石油钻探技术,2024,52(6):62−68. DOI: 10.11911/syztjs.2024114
引用本文: 黄峰,陈世春,刘立超,等. BH−VDT3000垂直钻井系统研制与现场试验[J]. 石油钻探技术,2024,52(6):62−68. DOI: 10.11911/syztjs.2024114
HUANG Feng, CHEN Shichun, LIU Lichao, et al. Development and field test of BH-VDT3000 vertical drilling system [J]. Petroleum Drilling Techniques, 2024, 52(6):62−68. DOI: 10.11911/syztjs.2024114
Citation: HUANG Feng, CHEN Shichun, LIU Lichao, et al. Development and field test of BH-VDT3000 vertical drilling system [J]. Petroleum Drilling Techniques, 2024, 52(6):62−68. DOI: 10.11911/syztjs.2024114

BH−VDT3000垂直钻井系统研制与现场试验

基金项目: 中国石油集团渤海钻探重大研发项目“BH−VDT3000垂直钻井工具研制”(编号:2021ZD02F−01)、中国石油天然气集团公司重点科技成果商业化产业化示范研究项目“BH−VDT垂直钻井技术商业化产业化示范”(编号:2023DQ0106−17(JT))联合资助。
详细信息
    作者简介:

    黄峰(1982—),男,江苏睢宁人,2005年毕业于河北科技大学机械设计制造及其自动化专业,2008年获河北科技大学机械制造及其自动化专业硕士学位,高级工程师,主要从事垂直钻井系统的研制与应用工作。E-mail:huangf502@163.com

  • 中图分类号: TE242

Development and Field Test of BH-VDT3000 Vertical Drilling System

  • 摘要:

    针对BH−VDT3000垂直钻井系统研制过程中遇到的技术问题,利用平衡趋势造斜率预测方法,分析了影响BH−VDT3000垂直钻井系统纠斜能力的因素及其影响规律,系统分析了BH−VDT3000第一代样机现场试验失败的原因,给出了第二代样机的结构、钻具组合及钻进参数优化方案,并进行了现场试验。理论研究及现场试验结果表明,推靠式垂直钻井系统的钻头侧向力指向井眼低边时有利于纠斜,钻头转角指向高边时不利于纠斜,选择钻具组合与钻井参数(含推靠力)时需要平衡二者对钻进趋势的影响,否则会失去纠斜能力;BH−VDT3000垂直钻井系统直径小、刚度低,若采用与大尺寸垂直钻井系统相同的钻具组合,极有可能失去纠斜能力;整体缩短导向头长度、导向翼肋与稳定器之间的距离,有助于提升中等尺寸垂直钻井系统的井斜控制能力。

    Abstract:

    Based on the technical problems encountered during the development of BH-VDT3000 vertical drilling system (VDS), the influencing factors and rules of its straightening capability were analyzed by the prediction method of equilibrium trend build-up rate. The reasons for the field test failure of the first-generation BH−VDT3000 prototype were comprehensively analyzed, thereafter the optimization scheme of the structure, bottom-hole assembly (BHA), and drilling parameters of the second-generation prototype were proposed. Field tests were also conducted. The theoretical research and field test results show that the bit lateral force of the push-the-bit VDS pointing to the low side of the borehole has positive impact on straightening, and the bit tilt angle pointing to the high side has passive impact on straightening. Their influences on the drilling trend should be balanced when selecting the BHA and drilling parameters (including the push-the-bit force), otherwise, the straightening capability will be lost. Because BH-VDT3000 VDS has a small diameter and low stiffness, it is very likely to lose the straightening capability if the same BHA of a large-size VDS is used. Shortening the overall length of the steering sub and the distance between the steering pads and the stabilizer can improve the straightening capability of the medium-size VDS.

  • 图  1   BH−VDT垂钻系统的总体结构

    Figure  1.   Overall structure of BH-VDT VDS

    图  2   BH−VDT钻具组合钻进趋势预测示意

    Figure  2.   Drilling trend prediction of BH-VDT BHA

    图  3   稳定器与推靠翼肋距离对第一代样机纠斜能力的影响

    Figure  3.   Influence of distance between stabilizer and push-the-bit pads on straightening capability of first-generation prototype

    图  4   钻压对第一代样机纠斜能力的影响

    Figure  4.   Influence of weight-on-bit on straightening capabilityof first-generation prototype

    图  5   推靠力对第一代样机纠斜能力的影响

    Figure  5.   Influence of push-the-bit force on straighteningcapability of first-generation prototype

    图  6   第二代BH−VDT3000样机的总体结构

    Figure  6.   Overall structure of second-generation BH-VDT3000 prototype

    图  7   钻压对第二代样机纠斜能力的影响

    Figure  7.   Influence of weight-on-bit on straightening capabilityof second-generation prototype

    图  8   推靠力对第二代样机纠斜能力的影响

    Figure  8.   Influence of push-the-bit force on straighteningcapability of second-generation prototype

    表  1   第一代BH−VDT3000样机现场试验效果对比

    Table  1   Comparisons of field test results of first-generation BH-VDT3000 prototype

    井段 钻具组合 钻头类型及新度 钻压/kN 转速/(r·min−1 段长/m 井斜角/(°) 机械钻速/(m·h−1
    领眼段 光钻铤 JZ牙轮钻头,新度100% 80~120 70 24 0.44~0.64 1.78
    ϕ241.3 mm井段 BH−VDT3000钻具组合 DBS锥齿PDC钻头,新度100% 40~80 60~70 9 0.64→1.72 17.64
    ϕ241.3 mm井段 PowerV 675钻具组合 DBS修复PDC钻头,新度100% 40~60 60~70 17 1.72→0.28 10.00
     注:BH−VDT3000钻具组合中只有一个单稳定器,稳定器在BH−VDT3000上方,与推靠翼肋的距离16.00 m;PowerV 675钻具组合中有2个稳定器,下稳定器在PowerV 675上方,与推靠翼肋的距离约4.60 m。
    下载: 导出CSV

    表  2   第一和第二代BH−VDT3000样机现场试验效果对比

    Table  2   Comparison of field test results of first-generation and second-generation BH-VDT3000 prototypes

    井名钻压/kN转速/(r·min−1扭矩/(kN·m)排量/(L·s−1试验井段/m进尺/m工作时间/h井斜角/(°)
    入井出井
    博孜3−H5井40~8060~706~15354 095~4 10490.50.641.72
    ManS71−H5井80~10085~957~1834~384 575~4 6659025.00.500.36
    下载: 导出CSV
  • [1] 刘以明,蔡文军,王平,等. Power V和机械式随钻测斜仪在黑池1井的应用[J]. 石油钻探技术,2006,34(1):71–73. doi: 10.3969/j.issn.1001-0890.2006.01.021

    LIU Yiming, CAI Wenjun, WANG Ping, et al. Application of Power V and mechanical inclinometer in Heichi 1 Well[J]. Petroleum Drilling Techniques, 2006, 34(1): 71–73. doi: 10.3969/j.issn.1001-0890.2006.01.021

    [2]

    BARR J D, CLEGG J M, RUSSELL M K. Steerable rotary drilling with an experimental system[R]. SPE 29382, 1995.

    [3] 薄和秋,赵永强. Verti Trak垂直钻井系统在川科1井中的应用[J]. 石油钻探技术,2008,36(2):18–21. doi: 10.3969/j.issn.1001-0890.2008.02.006

    BO Heqiu, ZHAO Yongqiang. Application of Verti Trak in Chuanke-1 Well[J]. Petroleum Drilling Techniques, 2008, 36(2): 18–21. doi: 10.3969/j.issn.1001-0890.2008.02.006

    [4]

    de PATER C J H, ZOBACK M D, WRIGHT C A, et al. Complications with stress tests-insights from a fracture experiment in the ultra-deep KTB borehole[R]. SPE 36437, 1996.

    [5] 柴麟,张凯,刘宝林,等. 自动垂直钻井工具分类及发展现状[J]. 石油机械,2020,48(1):1–11.

    CHAI Lin, ZHANG Kai, LIU Baolin, et al. Classification and development status of automatic vertical drilling tools[J]. China Petroleum Machinery, 2020, 48(1): 1–11.

    [6] 王锡洲. 捷联式自动垂直钻井系统的研制及现场试验[J]. 石油钻探技术,2010,38(3):13–16. doi: 10.3969/j.issn.1001-0890.2010.03.003

    WANG Xizhou. Development and field test of automated strap-down vertical drilling system[J]. Petroleum Drilling Techniques, 2010, 38(3): 13–16. doi: 10.3969/j.issn.1001-0890.2010.03.003

    [7] 孙峰,吕官云,马清明. 捷联式自动垂直钻井系统[J]. 石油学报,2011,32(2):360–363. doi: 10.7623/syxb201102029

    SUN Feng, LYU Guanyun, MA Qingming. A strap-down automatic vertical drilling system[J]. Acta Petrolei Sinica, 2011, 32(2): 360–363. doi: 10.7623/syxb201102029

    [8] 蒋金宝,陈养龙,倪红坚. UPC-VDS垂直钻井系统在顺南地区的应用[J]. 断块油气田,2014,21(6):790–793.

    JIANG Jinbao, CHEN Yanglong, NI Hongjian. Application of UPC-VDS vertical drilling system in Shunnan area[J]. Fault-Block Oil & Gas Field, 2014, 21(6): 790–793.

    [9] 汝大军,张健庚,周胜鹏,等. BH-VDT5000垂直钻井系统在克深203井的应用[J]. 石油钻采工艺,2012,34(4):1–3. doi: 10.3969/j.issn.1000-7393.2012.04.001

    RU Dajun, ZHANG Jiangeng, ZHOU Shengpeng, et al. Application of the vertical drilling system BH-VDT5000 on Well Keshen 203[J]. Oil Drilling & Production Technology, 2012, 34(4): 1–3. doi: 10.3969/j.issn.1000-7393.2012.04.001

    [10] 滕学清,刘洪涛,李宁,等. 塔里木博孜区块超深井自动垂直钻井难点与技术对策[J]. 石油钻探技术,2021,49(1):11–15. doi: 10.11911/syztjs.2020113

    TENG Xueqing, LIU Hongtao, LI Ning, et al. Difficulties and technical countermeasures for automatic vertical drilling in ultra-deep wells in the Bozi Block of the Tarim Basin[J]. Petroleum Drilling Techniques, 2021, 49(1): 11–15. doi: 10.11911/syztjs.2020113

    [11] 伊明,赵继斌,方弘廉,等. 国产自动垂直钻井系统技术突破与现场应用[J]. 钻采工艺,2024,47(2):159–168. doi: 10.3969/J.ISSN.1006-768X.2024.02.18

    YI Ming, ZHAO Jibin, FANG Honglian, et al. Technology breakthrough and field application of domestically produced automatic vertical drilling system[J]. Drilling & Production Technology, 2024, 47(2): 159–168. doi: 10.3969/J.ISSN.1006-768X.2024.02.18

    [12] 田玉栋,柳贡慧,齐悦,等. DQCZ垂直钻井系统导向执行机构的优化完善[J]. 钻采工艺,2023,46(6):152–157. doi: 10.3969/J.ISSN.1006-768X.2023.06.24

    TIAN Yudong, LIU Gonghui, QI Yue, et al. Optimization and improvement of steering actuator of DQCZ vertical drilling system[J]. Drilling & Production Technology, 2023, 46(6): 152–157. doi: 10.3969/J.ISSN.1006-768X.2023.06.24

    [13] 康建涛,苏海峰,张川,等. BH-VDT大尺寸垂直钻井工具设计优化与应用[J]. 长江大学学报(自然科学版),2021,18(6):63–68. doi: 10.3969/j.issn.1673-1409.2021.06.009

    KANG Jiantao, SU Haifeng, ZHANG Chuan, et al. Design optimization and application of BH-VDT large size vertical drilling tool[J]. Journal of Yangtze University (Natural Science Edition), 2021, 18(6): 63–68. doi: 10.3969/j.issn.1673-1409.2021.06.009

    [14] 康建涛,汝大军,马哲,等. BH-VDT垂直钻井系统导向块结构优化设计及现场试验[J]. 石油钻采工艺,2019,41(4):475–479.

    KANG Jiantao, RU Dajun, MA Zhe, et al. Structure design optimization and field test on the guide block of BH-VDT vertical drilling system[J]. Oil Drilling & Production Technology, 2019, 41(4): 475–479.

    [15] 陶松龄,陈世春,徐明磊,等. 滑动推靠式垂直钻井系统结构性能优化及应用[J]. 石油矿场机械,2021,50(1):77–83. doi: 10.3969/j.issn.1001-3482.2021.01.012

    TAO Songling, CHEN Shichun, XU Minglei, et al. Structural performance optimization and field application of the sliding push type vertical drilling system[J]. Oil Field Equipment, 2021, 50(1): 77–83. doi: 10.3969/j.issn.1001-3482.2021.01.012

    [16] 杨春旭,韩来聚,步玉环,等. 垂直钻井系统配合单稳定器力学性能研究[J]. 断块油气田,2012,19(3):364–369.

    YANG Chunxu, HAN Laiju, BU Yuhuan, et al. Study on mechanical property of vertical drilling systems matching with single stabilizer[J]. Fault-Block Oil & Gas Field, 2012, 19(3): 364–369.

    [17] 史玉才,管志川,赵洪山,等. 底部钻具组合造斜率预测新方法[J]. 中国石油大学学报(自然科学版),2017,41(1):85–89. doi: 10.3969/j.issn.1673-5005.2017.01.010

    SHI Yucai, GUAN Zhichuan, ZHAO Hongshan, et al. A new method for build-up rate prediction of bottom-hole assembly in well drilling[J]. Journal of China University of Petroleum(Edition of Natural Science), 2017, 41(1): 85–89. doi: 10.3969/j.issn.1673-5005.2017.01.010

    [18]

    WANG H, GUAN Z C, SHI Y C, et al. Drilling trajectory prediction model for push-the-bit rotary steerable bottom hole assembly[J]. International Journal of Engineering, 2017, 30(11): 1800–1806.

    [19]

    WANG Heng, GUAN Zhichuan, SHI Yucai, et al. Study on build-up rate of push-the-bit rotary steerable bottom hole assembly[J]. Journal of Applied Science and Engineering, 2017, 20(3): 401–408.

    [20]

    SHI Yucai, TENG Zhixiang, GUAN Zhichuan, et al. A powerful build-up rate (BUR) prediction method for the static push-the-bit rotary steerable system (RSS)[J]. Energies, 2020, 13(18): 4847. doi: 10.3390/en13184847

  • 期刊类型引用(4)

    1. 王万江,李伟勤,刘昌岷,吴育涵. 井下表面电磁波协同中继传输方法. 石油钻探技术. 2024(04): 143-150 . 本站查看
    2. 王磊,窦修荣,滕鑫淼,刘珂,范锦辉. 气体钻井发电机涡轮设计与性能试验. 钻采工艺. 2023(06): 94-99 . 百度学术
    3. 江波,夏文鹤,严焱诚,王希勇,胡万俊,黄河淳. 气体钻井微波传输随钻监测系统软件设计. 电子技术应用. 2021(10): 90-94 . 百度学术
    4. 王庆,管志川,刘永旺,谢虹桥,张波,胜亚楠,赵国山. 气体钻井钻柱拉应力对纵波特性的影响. 石油机械. 2020(09): 1-7 . 百度学术

    其他类型引用(1)

图(8)  /  表(2)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  41
  • PDF下载量:  61
  • 被引次数: 5
出版历程
  • 收稿日期:  2023-03-17
  • 修回日期:  2024-11-07
  • 网络出版日期:  2024-11-17
  • 刊出日期:  2024-11-24

目录

    /

    返回文章
    返回