Research Progress and Prospects of Key Technologies for Intelligent Managed Pressure Drilling
-
摘要:
随着油气勘探开发快速向深层、深水、非常规等复杂难动用领域发展,涌、漏、塌、卡等井下风险显著增加,亟需研发自动化程度更高、且具有智能化操控能力的精细控压钻井技术与装备,加速由半自动化、自动化到智能化的发展进程,实现早期精准复杂工况预测,更快、更准地控制并消除钻井风险。在调研国内外控压钻井技术与装备的智能化发展现状的基础上,阐述了智能控压在智能控制、数据采集与处理等装备方面,以及井下复杂深度学习识别方法、智能决策分析软件等关键技术的研究进展,试验初步验证了其显著的技术优势,但仍有待现场充分验证与完善。建议进一步加速控压钻井技术与智能技术的跨界融合,建立支撑复杂油气高效勘探开发的智能控压钻井技术体系,助力我国油气工程技术高水平自立自强。
Abstract:With the gradual development of oil and gas exploration towards complex and difficult-to-use fields such as deep formation, deep water, and unconventional areas, the underground risks such as “surge, leakage, collapse, and sticking” have significantly increased. It is urgent to further develop precise managed pressure drilling (MPD) technology and equipment with higher automation and intelligent control capabilities, accelerate the development from semi-automation, automation, to intelligence, achieve accurate and early prediction of complex working conditions, and control and eliminate drilling risks faster and more accurately. A detailed investigation on the intelligent development of MPD technology and equipment in China and abroad was conducted, and the research progress of intelligent pressure control in equipment such as intelligent control, data acquisition and processing, as well as key technologies including complex underground deep learning methods and intelligent decision-making analysis software was discussed. Preliminary experimental verification shows the technical advantages of intelligent MPD technology, but it still needs to be fully verified and improved on site. In the future, by accelerating the cross-border integration of MPD technology and intelligent technology, it is expected to establish an intelligent pressure control drilling technology system that supports efficient exploration and development of complex oil and gas and help China’s oil and gas engineering technology achieve high-level self-reliance and self-improvement.
-
Keywords:
- managed pressure drilling /
- intelligentization /
- key technologies /
- equipment /
- software
-
近年来,随着非常规油气资源勘探开发的力度不断加大,各油田地质导向随钻测井作业的需求日益增多,对随钻声波远探测的方位测量性能和探测深度提出了新的要求[1-4]。
在这方面,国内外已经开展了相关研究工作。国外,哈里伯顿公司提出了声波地质导向方法[5],可探测不同深度、不同方向地层的声波速度,根据声波速度成像识别储层界面位置,对含气地层的地质导向效果明显;斯伦贝谢公司在随钻声波测井仪器上使用偏心点声源环向扫描地层[6],具有强于偶极传感器的辐射能量和方位指向性,可实现地层各向异性的随钻测量。国内,乔文孝等人[7]提出了一种随钻地层界面声波扫描测量装置,使用1个声波辐射器和2个不同源距的声波接收器接收声波,声波辐射器和声波接收器均位于钻铤的同侧,可以获取井旁地层界面距离和方位;卫建清等人[8]使用人工合成水平横向各向同性慢速地层的随钻偏心点声源声波测井资料,定量评价了地层横波各向异性大小;张正鹏等人[9]数值模拟了瓦片状声源随钻方位声波测井仪器在均匀地层、方位分区变化地层以及过界面地层中的测井响应特征;孙志峰等人[10-12]采用有限元法,对适用于随钻多极子声波测井仪的叠片型接收换能器进行了优化设计,制作了长条方管形薄壁铝壳的接收声系封装外壳,提高了信号的采集质量。截至目前,关于不同方向声波速度的研究侧重于理论建模和数值模拟,由于理论模型过于复杂,很难通过试验测量来验证数值模拟结果。
为了研究随钻声波远探测的方位声波速度测量性能,笔者构建了一个不同方向速度模型井,并加工了模型井试验装置,数值模拟了该模型井的声波传播和慢度成像,然后利用试验装置进行了方位声波速度测量试验。通过数值模拟和试验测量的相互验证,为随钻声波远探测仪器的声源选型和数据采集提供了理论依据。
1. 声波速度成像数值模拟
1.1 不同方向速度模型井
构建的模型井[13]如图1所示(T为瓦片状方位声源,R1,R2,…,R8为条带接收器阵列上的接收单元),从井内到井外依次为水、铝质钻铤、水、圆形管,圆形管内半径108 mm,圆形管径向厚度10 mm,轴向高度3 000 mm;井外为无穷大水介质,分为A,B,C和D等4个扇区,A扇区方位角315°~45°,B扇区方位角45°~135°,C扇区方位角135°~225°,D扇区方位角225°~315°,分别由铝、PVC、不锈钢和PVC制成,相邻扇区的纵波速度和横波速度各不相同,模型井的声学参数见表1。随钻声波远探测仪位于圆形管内且居中,使用了1个瓦片状方位声源发射声波和1个条带接收器接收声波,条带接收器安装在声源的同一方向上,内部包含有8个接收单元接收声波,接收源距为2 000 mm(最近接收单元离声源的距离),接收间距为200 mm。为了便于数值模拟,减少钻铤波的干扰,截断了声源和接收器之间的钻铤。
表 1 模型井声学参数Table 1. Acoustic parameters of well model介质类型 纵波速度/
(m·s−1)横波速度/
(m·s−1)密度/
(kg·m−3)内半径/
mm外半径/
mm水 1 500 0 1 000 0 108 铝质钻铤 6 300 3 100 2 700 28 86 A扇区 6 300 3 100 2 700 108 118 B扇区 2 600 1 300 1 400 108 118 C扇区 5 800 3 100 7 800 108 118 D扇区 2 600 1 300 1 400 108 118 水 1 500 0 1 000 118 500 1.2 方位声波慢度成像
采用有限差分法,数值模拟了不同方向速度模型井的声场传播规律[14]。数值模拟时,采用了偏极子发射和偏极子接收的测量模式,即采用1个瓦片状方位声源来发射声波和1个条带接收器来接收波形。
图2所示为方位角为0°,90°,180°和270°时接收到的波形。从图2可以看出,方位角为0°的接收波形与其他方位角的接收波形不同,方位角为180°的接收波形与其他方位角的接收波形不同,而方位角为90°和方位角为270°的接收波形相同,这说明方位角为0°和方位角为180°对应的介质与其他方位角对应的介质不同,但是方位角为90°和方位角为270°对应的是同一种介质,这与模型井声学参数的设置是一致的。
图3为 0°,90°,180°和 270°等4个方位角的接收波形的时间慢度相关图。从图3可以看出,沿着模型井传播的模式波较多,这里只讨论“首波”(传播时间最短的模式波,标记为P)的传播情况,方位角0°对应介质的“首波”慢度为190 μs/m,方位角180°对应介质的“首波”慢度为200 μs/m,方位角90°和270°对应介质的“首波”慢度均为230 μs/m,说明相邻扇区对应介质的“首波”速度各不相同。
图4为方位声波慢度成像图,即对声波时间慢度按照方位角所画的图。计算得到方位角为0°,90°,180°和270°时,对应介质的“首波”速度分别为5 263.1,4 347.8,5 000.0和4 347.8 m/s。这里的“首波”速度,既不是模型井的纵波速度,也不是模型井的横波速度,而是沿模型井传播的导波速度。由于模型井的圆形管管壁薄,仪器在管壁内激发出导波,不同方位角的导波速度有明显差异。
从图4可以看出,方位角为0°和180°时模拟得到的声波速度是铝和不锈钢的导波速度,但方位角为90°和270°时模拟得到的声波速度则不是PVC材质的导波速度。造成这种现象的原因是,铝的两侧是PVC材质,相当于1个高速层夹在2个低速层之间,高速层的模拟结果不会受到低速层的影响;但是,PVC材质的两侧是铝和不锈钢,相当于1个低速层夹在2个高速层之间,当声波定向发射到低速层上时,声波会优先选择两侧的高速层传播,导致低速层的模拟结果受到高速层的影响,使得模拟得到的声波速度介于PVC和铝、不锈钢的导波速度之间,实际是三者的综合导波速度。尽管方位角为90°和270°时模拟得到的声波速度不是PVC的导波速度,但这2个方位角的声波速度在4个扇区里仍然是最低的,并未改变不同方向声波速度模型井的声学参数变化趋势,也就是说,使用方位声源仍然可以获取井周地层方位声波速度信息和识别方位分区的变化。
2. 声波速度测量试验
为了检验上述数值模拟的效果,按照图1所示的模型井设计了试验装置[15],该试验装置为1瓣铝质扇形管、1瓣钢质扇形管和2瓣PVC扇形管组合成的圆形管。圆形管的长度为3 000 mm,管壁厚度为10 mm,设计加工成本很低。同时,研制了一套随钻声波测量装置,包括1个发射短节和1个接收短节,均由铝质材料加工而成,外径均为171.0 mm,内径均为57.2 mm,长度分别为417.0和543.0 mm。随钻声波测量采用“一发两收”的工作模式,在发射短节上安装了一个瓦片状声波发射换能器(标记为T),发射换能器的发射频率为13.8 kHz,瓦片弧度为90°,外半径为85 mm,内半径为70 mm,高度为120 mm。在接收短节上安装了一个接收器阵列,接收器阵列由2个宽频接收换能器(标记为R1和R2)组成,接收换能器的接收带宽为0~32.2 kHz,间距为200 mm。
为方便操作,在模型井上套了一个方位刻度盘,用于调整声系的所放位置,如图5所示(图5中,方位角0°指向铝质扇形管,方位角90°和270°指向PVC扇形管,方位角180°指向钢质扇形管,绿色箭头表示声波沿着模型井的管壁传播)。把模型井放入一个专用大水池内,并且完全淹没在水里。在模型井内放入随钻声波测量装置并居中,声波发射短节和接收短节分开放置,接收源距为2 400 mm,保证发射换能器和接收换能器在同一个方位角上。
开展了4种情形的试验测量,转动试验装置,使得声波发射和接收分别指向方位角0°,90°,180°和270°,接收换能器R1和R2记录到了4个方位角的波形(见图6)。
从图6可以看出,对于4个方位角的波形,R1接收到的声波到时短、幅度大,R2接收到的声波到时长、幅度小,两列波的声波到时差分别为40,50,40和50 μs(声波采样间隔为5 μs),转换为声波速度(记为vp)分别为5 000,4 000,5 000和4 000 m/s。
由于模型井的圆形管管壁薄,仪器在管壁内激发出导波,因此测量得到的声波速度是导波速度。声波速度测量数据见表2。
表 2 声波速度测量数据Table 2. Acoustic velocity measured data序号 方位角/
(°)声波速度/(m·s−1) 测量偏差,
%数值模拟 试验测量 1 0 5 263.1 5 000 4.99 2 90 4 347.8 4 000 7.99 3 180 5 000.0 5 000 0 4 270 4 347.8 4 000 7.99 由表2可知,方位角为0°,90°,180°和270°时测量到的声波速度与数值模拟结果的偏差分别为4.99%,7.99%,0%和7.99%,两者数值基本吻合。因此,使用瓦片状方位声源能够准确测量2个扇区高速介质的声波速度,同时识别出2个扇区低速介质的声波速度变化趋势。
3. 结论与建议
1)建立了不同方向速度模型井,相邻扇区的纵波速度和横波速度不同,表示井周方向上地层是非均质的。数值模拟结果表明,使用偏极子发射和偏极子接收的测量模式,获取了方位角为0°,90°,180°和270°时的接收波形,并计算得到了这4个方位角的声波速度,方位声波慢度成像图能够明显反映出模型井的分区变化。
2)设计了不同方向速度模型井试验装置,并开展了声波速度测量试验,采用瓦片状声波发射换能器发射声波,准确测量到了2个扇区高速介质的声波速度,同时识别出了2个扇区低速介质的声波速度变化趋势;与数值模拟结果相比,4个方位角的声波速度测量偏差分别为4.99%,7.99%,0%和7.99%,表明试验测量结果可靠。
3)不同方向速度模型井建模简单,试验装置设计成本低,便于研究不同方向声波速度的变化规律;但受限于模型井的圆形管壁薄,只能提取到模型井的导波速度,而不能提取到模型井的纵波速度和横波速度。因此,该模型井只适合对随钻声波远探测原理样机进行功能性验证,如果需要对随钻声波远探测工程样机的性能进行全面评价,建议在刻度井里进行标定测试。
-
[1] 田野,王成龙,柳亚亚,等. 深水钻井中控压响应时间及其影响因素分析[J]. 石油机械,2023,51(4):61–67. TIAN Ye, WANG Chenglong, LIU Yaya, et al. Analysis on managed pressure response time and its influential factors in deepwater drilling[J]. China Petroleum Machinery, 2023, 51(4): 61–67.
[2] 张锐尧,李军,杨宏伟,等. 空心球多梯度控压钻井井筒压力控制方法[J]. 天然气工业,2022,42(11):98–105. ZHANG Ruiyao, LI Jun, YANG Hongwei, et al. A control method of wellbore pressure during multi-gradient managed pressure drilling based on hollow glass sphere[J]. Natural Gas Industry, 2022, 42(11): 98–105.
[3] 何保生,张钦岳,冷雪霜. 墨西哥超深水盐下钻井技术及实践[J]. 中国海上油气,2021,33(6):101–109. HE Baosheng, ZHANG Qinyue, LENG Xueshuang. Ultra deepwater pre-salt drilling technologies and their practices in Mexico[J]. China Offshore Oil and Gas, 2021, 33(6): 101–109.
[4] 谭鹏,何思龙,李明印,等. 库车坳陷超深层复杂气田钻完井技术[J]. 石油钻采工艺,2021,43(5):580–585. TAN Peng, HE Silong, LI Mingyin, et al. Drilling and completion technologies for ultra-deep complex gas field in Kuqu Depres-sion[J]. Oil Drilling & Production Technology, 2021, 43(5): 580–585.
[5] 刘彪,潘丽娟,王沫. 顺北油气田二区断控体油气藏井身结构设计及配套技术[J]. 断块油气田,2023,30(4):692–697. LIU Biao, PAN Lijuan, WANG Mo. Well structure design and supporting technology of fault-controlled reservoir of No.2 Block in Shunbei Oil-Gas Field[J]. Fault-Block Oil & Gas Field, 2023, 30(4): 692–697.
[6] 刘伟,周英操,石希天,等. 塔里木油田库车山前超高压盐水层精细控压钻井技术[J]. 石油钻探技术,2020,48(2):23–28. LIU Wei, ZHOU Yingcao, SHI Xitian, et al. Precise managed pressure drilling technology for ultra-high pressure brine layer in the Kuqa Piedmont of the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 23–28.
[7] Halliburton. FlexTM MPD[EB/OL]. [2024-08-20]. https://cdn.brandfolder.io/G1R8FA5S/as/q5uwmy-7be7kg-450xeq/Flex_MPD.pdf.
[8] Halliburton. Implementing a flexible MPD approach in Vaca Muerta[EB/OL]. [2024-08-20]. https://cdn.brandfolder.io/G1R8FA5S/as/cpp4zcjxtnfh946wgvmgg7p/Flex_MPD-UBD-HAL-70-71_EnP.pdf.
[9] Weatherford. Victus™ manifold[EB/OL]. [2024-08-20]. https://www.weatherford.com/documents/technical-specification-sheet/products-and-services/drilling/victus-manifold/.
[10] Weatherford. Victus™ intelligent MPD[EB/OL]. [2024-08-20]. https://www.weatherford.com/documents/brochure/products-and-services/drilling/victus-intelligent-mpd/.
[11] Weatherford. MPD fluid-extraction system[EB/OL]. [2024-08-20]. https://www.weatherford.com/documents/technical-specification-sheet/products-and-services/drilling/mpd-fluid-extraction-system/.
[12] Schlumberger. I-balance[EB/OL]. [2024-08-20]. https://www.slb.com/-/media/files/mi/product-sheet/i-balance-ps.ashx.
[13] Schlumberger. Choke manifolds[EB/OL]. [2024-08-20]. https://www.slb.com/-/media/files/mi/brochure/choke-manifolds-brochure.ashx.
[14] Schlumberger. MPD reduces rig operating days in the Bakken[EB/OL]. [2024-08-20]. https://www.slb.com/-/media/files/mi/industry-article/2019-0801-ep-mpd-bakken.ashx.
[15] NOV. MPowerD choke manifold: 5000S[EB/OL]. [2024-08-20]. https://www.nov.com/-/media/nov/files/products/wbt/wellsite-services/mpowerd-choke-manifold-5000s/mpowerd-choke-manifold-5000s-spec-sheet.pdf.
[16] CORREA L. Industry’s first truly integrated MPD control system advances offshore drilling efficiency[EB/OL]. [2024-08-20]. https://www.nov.com/-/media/nov/files/products/wbt/wellsite-services/mpowerd-managed-pressure-drilling-systems/industrys-first-truly-integrated-mpd-control-system-advances-offshore-drilling-efficiency--2021-worl.pdf.
[17] Opla Energy. MPDSmart™ manifold[EB/OL]. [2024-08-20]. https://www.oplaenergy.com/technology-and-solutions/mpd-smart-manifold.
[18] MAMMADOV E, HOFFARTH D. Revolutionizing rig integration with next-generation MPD equipment: the pressure management device (PMD)[R]. SPE 214552, 2023.
[19] 刘伟,周英操,王瑛,等. 国产精细控压钻井系列化装备研究与应用[J]. 石油机械,2017,45(5):28–32. LIU Wei, ZHOU Yingcao, WANG Ying, et al. Domestic accurate managed pressure drilling series equipment and technology[J]. China Petroleum Machinery, 2017, 45(5): 28–32.
[20] 付加胜,刘伟,周英操,等. 单通道控压钻井装备压力控制方法与应用[J]. 石油机械,2017,45(1):6–9. FU Jiasheng, LIU Wei, ZHOU Yingcao, et al. Pressure control method and application of managed pressure drilling equipment with single channel[J]. China Petroleum Machinery, 2017, 45(1): 6–9.
[21] 周英操,刘伟. PCDS精细控压钻井技术新进展[J]. 石油钻探技术,2019,47(3):68–74. doi: 10.11911/syztjs.2019071 ZHOU Yingcao, LIU Wei. New progress on PCDS precise pressure management drilling technology[J]. Petroleum Drilling Techniques, 2019, 47(3): 68–74. doi: 10.11911/syztjs.2019071
[22] 周英操,郭庆丰,蔡骁,等. 精细控压钻井技术及装备研究进展[J]. 钻采工艺,2024,47(4):94–104. doi: 10.3969/J.ISSN.1006-768X.2024.04.13 ZHOU Yingcao, GUO Qingfeng, CAI Xiao, et al. Research advance of managed pressure drilling technology and equipment[J]. Drilling & Production Technology, 2024, 47(4): 94–104. doi: 10.3969/J.ISSN.1006-768X.2024.04.13
[23] 刘伟,王瑛,郭庆丰,等. 精细控压钻井技术创新与实践[J]. 石油科技论坛,2016,35(4):32–37. LIU Wei, WANG Ying, GUO Qingfeng, et al. Innovation and application of accurate managed pressure drilling technology[J]. Petroleum Science and Technology Forum, 2016, 35(4): 32–37.
[24] 孙海芳,冯京海,肖新宇,等. 川庆钻探工程公司精细控压钻井系统研发及应用[J]. 钻采工艺,2012,35(2):1–4. doi: 10.3969/J.ISSN.1006-768X.2012.02.01 SUN Haifang, FENG Jinghai, XIAO Xinyu, et al. Development and application of fine managed pressure drilling (MPD) system of CCDC[J]. Drilling & Production Technology, 2012, 35(2): 1–4. doi: 10.3969/J.ISSN.1006-768X.2012.02.01
[25] 陈若铭,伊明,杨刚. 精细控压钻井系统[J]. 石油科技论坛,2013,32(3):55–57. doi: 10.3969/j.issn.1002-302x.2013.03.014 CHEN Ruoming, YI Ming, YANG Gang. Precise pressure-controlled drilling system[J]. Petroleum Science and Technology Forum, 2013, 32(3): 55–57. doi: 10.3969/j.issn.1002-302x.2013.03.014
[26] 郗凤亮,徐朝阳,马金山,等. 控压钻井自动分流管汇系统设计与数值模拟研究[J]. 石油钻探技术,2017,45(5):23–29. XI Fengliang, XU Chaoyang, MA Jinshan, et al. Design and numerical simulation of an automatic diverter manifold in managed pressure drilling[J]. Petroleum Drilling Techniques, 2017, 45(5): 23–29.
[27] 中国石化报. 中国石化十大石油工程技术公开[EB/OL]. (2024-08-07)[2024-08-07]. https://mp.weixin.qq.com/s?__biz=MjM5Nzc2Mzg1NA==&mid=2651437266&idx=1&sn=4f64983cb0473ad13538b90c578b7ff7&chksm=bcd25472a2a7dc4a7be5eec73b4abd970f59a9bd052db1a8aea7c216b5d582c069459c8d7d93&scene=27. China Petrochemical News. Top 10 petroleum engineering technologies publicly issued by Sinopec[EB/OL]. (2024-08-07)[2024-08-07]. https://mp.weixin.qq.com/s?__biz=MjM5Nzc2Mzg1NA==&mid=2651437266&idx=1&sn=4f64983cb0473ad13538b90c578b7ff7&chksm=bcd25472a2a7dc4a7be5eec73b4abd970f59a9bd052db1a8aea7c216b5d582c069459c8d7d93&scene=27.
[28] VERMA R, MUTHAMIZHVENDAN V, GANESAN S, et al. Case study: first ever implementation of managed pressure drilling to drill exploratory and near wildcat well at ONGC Tripura Asset[R]. IPTC 22005, 2022.
[29] Halliburton. HalVue® real-time viewer[EB/OL]. [2024-08-20]. https://cdn.brandfolder.io/VUJJLY3X/at/fjkpmsk85t65zv4wkj95756/HalVue_Real-Time_Data_Viewer_H013581_-_DS.pdf.
[30] ROSTAMI S A, GUMUS F, SIMPKINS D, et al. New generation of MPD drilling software-from quantifying to control[R]. SPE 181694, 2016.
[31] ROSTAMI S A. Enhancing MPD functionality: successful application of adaptive intelligent drilling software in deepwater, offshore and onshore operations[R]. SPE 185287, 2017.
[32] eDrilling. eDrilling products[EB/OL]. [2024-08-20]. https://www.edrilling.no/products.
[33] eDrilling. Facilitating the best state-of-the art preparations and real time support for drilling operations[EB/OL]. [2024-08-20]. https://www.edrilling.no/Customer%20Success%20Examples/ai-in-wellconstruction.
[34] 刘伟,韩霄松,付加胜,等. C/S架构的新型控压钻井计算模拟与控制软件[J]. 吉林大学学报(信息科学版),2024,42(4):637–644. LIU Wei, HAN Xiaosong, FU Jiasheng, et al. Novel managed pressure drilling simulation and control software based on C/S architecture[J]. Journal of Jilin University(Information Science Edition), 2024, 42(4): 637–644.
[35] 付加胜,刘伟,邹易,等. 新型控压钻井计算模型与模拟系统研究[C]//第一届“油气珠峰”论坛暨2023年钻井基础理论研讨会论文集. 北京:石油工业出版社,2024:10-22. FU Jiasheng, LIU Wei, ZOU Yi, et al. Research on a novel managed pressure drilling calculation model and simulation system[C]//Proceedings of the First “Oil and Gas Mount Everest” Forum and 2023 Drilling Basic Theory Seminar. Beijing, Petroleum Industry Press, 2024: 10-22.
[36] FU Jiasheng, LIU Wei, ZHENG Xiangyu, et al. Transfer forest: a deep forest model based on transfer learning for early drilling kick detection[J]. Energies, 2023, 16(5): 2100. doi: 10.3390/en16052100
[37] LIU Wei, FU Jiasheng, LIANG Yanchun, et al. A well-overflow prediction algorithm based on semi-supervised learning[J]. Energies, 2022, 15(12): 4324. doi: 10.3390/en15124324
[38] YI Wan, LIU Wei, FU Jiasheng, et al. An improved transformer framework for well-overflow early detection via self-supervised learning[J]. Energies, 2022, 15(23): 8799. doi: 10.3390/en15238799
-
期刊类型引用(5)
1. 简旭,李皋,王军,王浩,王松涛,王华平. 气体钻井近钻头超前探测声源评价与优选. 石油钻探技术. 2025(01): 41-48 . 本站查看
2. 李宁,刘鹏,范华军,胡江涛,武宏亮. 基于阵列声波测井的井下多尺度压裂效果评价方法. 石油钻探技术. 2024(01): 1-7 . 本站查看
3. 艾昆,韩玉娇,高源. 随钻方位侧向电阻率测井电极系设计及响应模拟. 石油钻探技术. 2024(03): 127-136 . 本站查看
4. 李辉,谭忠健,耿长喜,邓津辉,张志虎,张立刚,李文元,李浩. 基于随钻录井工程参数的变质岩潜山储层物性预测方法及应用. 特种油气藏. 2023(06): 10-15 . 百度学术
5. 刘西恩,赵腾,车小花. 基于声波垂直入射于井壁的随钻远探测方法及初步数值模拟. 测井技术. 2023(05): 542-550+577 . 百度学术
其他类型引用(1)