井筒密封完整性监测与智能感知技术进展与展望

周仕明, 陆沛青

周仕明,陆沛青. 井筒密封完整性监测与智能感知技术进展与展望[J]. 石油钻探技术,2024,52(5):35−41. DOI: 10.11911/syztjs.2024097
引用本文: 周仕明,陆沛青. 井筒密封完整性监测与智能感知技术进展与展望[J]. 石油钻探技术,2024,52(5):35−41. DOI: 10.11911/syztjs.2024097
ZHOU Shiming, LU Peiqing. Advancements and prospects of monitoring and intelligent perception technology for wellbore sealing integrity [J]. Petroleum Drilling Techniques, 2024, 52(5):35−41. DOI: 10.11911/syztjs.2024097
Citation: ZHOU Shiming, LU Peiqing. Advancements and prospects of monitoring and intelligent perception technology for wellbore sealing integrity [J]. Petroleum Drilling Techniques, 2024, 52(5):35−41. DOI: 10.11911/syztjs.2024097

井筒密封完整性监测与智能感知技术进展与展望

基金项目: 国家自然科学基金企业创新联合基金项目“复杂环境下水泥环全生命周期密封理论与控制方法”(编号:U22B6003)资助。
详细信息
    作者简介:

    周仕明(1972—),男,安徽和县人,1993年毕业于石油大学(华东)钻井工程专业,2003年获石油大学(北京)油气井工程专业硕士学位,2013年获中国石油大学(北京)油气井工程专业博士学位,正高级工程师,主要从事固井工艺与材料研究。系本刊副主编。E-mail:zhousm.sripe@sinopec.com

  • 中图分类号: TE26;TE928

Advancements and Prospects of Monitoring and Intelligent PerceptionTechnology for Wellbore Sealing Integrity

  • 摘要:

    油气井生产过程中的井筒密封完整性演化信息是保障油气资源安全效益开发的基础,传统测井技术难以满足井筒全生命周期完整性的监测需求,实现井筒、地层信息感知与数字技术的高效融合势在必行。为此,国内外以井筒完整性原位感知技术为主要突破口,在声波监测、光纤传感、自感知水泥浆和永久井下测试装置等方面进行了探索。在总结国内外井筒密封完整性监测与智能感知技术进展的基础上,分析了存在的不足与难题,从声波监测技术、分布式光纤传感监测技术、智能水泥浆体系和井下永久测试装置等4方面进行了发展展望,并提出了发展建议,以推动构建智能井筒,实时精准掌握油气井井筒健康状况,促进油气工程技术安全、高效、智能化升级。

    Abstract:

    A comprehensive knowledge of wellbore sealing integrity evolution information during the oil and gas well production is the foundation to ensure the safe and efficient development of oil and gas resources. Traditional logging technology can not meet the needs of monitoring the integrity of the wellbore throughout the whole life cycle, and it is imperative to realize the efficient integration of the wellbore, formation information perception, and digital technology. Therefore, with the in-situ perception technology of wellbore integrity as the main breakthrough, the investigation has been carried out in China and overseas in terms of acoustic monitoring, optical fiber sensing, self-sensing cement slurry, and permanent downhole testing equipment. Based on summarizing the advancements of wellbore sealing integrity monitoring and intelligent perception technology in China and abroad, the existing disadvangates and problems were analyzed. In addition, the development prospect was also made from four aspects: acoustic monitoring technology, distributed optical fiber sensing monitoring technology, intelligent cement slurry system, and permanent downhole testing equipment, so as to build a digital wellbore, accurately understand the dynamic information of the wellbore condition of oil and gas wells in real time, and promote the safe, efficient, and intelligent upgrading of oil and gas engineering .

  • 图  1   井下水泥环密封性光纤传感室内测试装置

    Figure  1.   Indoor test device for sealing property of downhole cement sheath on optical fiber sensor

    图  2   大尺寸水泥浆液−电性能测试装置示意

    Figure  2.   Large-size “liquid-electric” performance test device of cement slurry

    图  3   窜流前后的自感知水泥浆电阻率试验结果

    Figure  3.   Test results of electrical resistivity on self-perception cement slurry before and after channeling

    图  4   固井水泥环井下智能监测原理样机

    Figure  4.   Prototype of downhole intelligent monitoring principle of cementing cement sheath

  • [1] 丁士东,陆沛青,郭印同,等. 复杂环境下水泥环全生命周期密封完整性研究进展与展望[J]. 石油钻探技术,2023,51(4):104–113.

    DING Shidong, LU Peiqing, GUO Yintong, et al. Progress and prospect on the study of full life cycle sealing integrity of cement sheath in complex environments[J]. Petroleum Drilling Techniques, 2023, 51(4): 104–113.

    [2] 曾义金. 中国石化深层超深层油气井固井技术新进展与发展建议[J]. 石油钻探技术,2023,51(4):66–73. doi: 10.11911/syztjs.2023035

    ZENG Yijin. Novel advancements and development suggestions of cementing technologies for deep and ultra-deep wells of Sinopec[J]. Petroleum Drilling Techniques, 2023, 51(4): 66–73. doi: 10.11911/syztjs.2023035

    [3] 贾承造,张永峰,赵霞. 中国天然气工业发展前景与挑战[J]. 天然气工业,2014,34(2):1–11. doi: 10.3787/j.issn.10000976.2014.02.001

    JIA Chengzao, ZHANG Yongfeng, ZHAO Xia. Prospects of and challenges to natural gas industry development in China[J]. Natural Gas Industry, 2014, 34(2): 1–11. doi: 10.3787/j.issn.10000976.2014.02.001

    [4] 李剑,佘源琦,高阳,等. 中国陆上深层—超深层天然气勘探领域及潜力[J]. 中国石油勘探,2019,24(4):403–417.

    LI Jian, SHE Yuanqi, GAO Yang, et al. Onshore deep and ultra-deep natural gas exploration fields and potentials in China[J]. China Petroleum Exploration, 2019, 24(4): 403–417.

    [5] 祝效华,李瑞,刘伟吉,等. 深层页岩气水平井高效破岩提速技术发展现状[J]. 西南石油大学学报(自然科学版),2023,45(4):1–18.

    ZHU Xiaohua, LI Rui, LIU Weiji, et al. Development status of high-efficiency rock-breaking and speed-increasing technologies for deep shale gas horizontal wells[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(4): 1–18.

    [6] 张锦宏,周爱照,成海,等. 中国石化石油工程技术新进展与展望[J]. 石油钻探技术,2023,51(4):149–158.

    ZHANG Jinhong, ZHOU Aizhao, CHENG Hai, et al. New progress and prospects for Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techniques, 2023, 51(4): 149–158.

    [7] 苏义脑,路保平,刘岩生,等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺,2020,42(5):527–542.

    SU Yinao, LU Baoping, LIU Yansheng, et al. Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5): 527–542.

    [8] 曾义金. 深层页岩气开发工程技术进展[J]. 石油科学通报,2019,4(3):233–241.

    ZENG Yijin. Progress in engineering technologies for the development of deep shale gas[J]. Petroleum Science Bulletin, 2019, 4(3): 233–241.

    [9] 袁建强. 中国石化页岩气超长水平段水平井钻井技术新进展与发展建议[J]. 石油钻探技术,2023,51(4):81–87.

    YUAN Jianqiang. New progress and development proposals of Sinopec’s drilling technologies for ultra-long horizontal shale gas wells[J]. Petroleum Drilling Techniques, 2023, 51(4): 81–87.

    [10] 张茹,吕游,张泽天,等. 深地工程多维信息感知与智能建造的发展与展望[J]. 煤炭学报,2024,49(3):1259–1290.

    ZHANG Ru, LYU You, ZHANG Zetian, et al. Development and prospect of multidimensional information perception and intelligent construction in deep earth engineering[J]. Journal of China Coal Society, 2024, 49(3): 1259–1290.

    [11] 张激扬,欧海晨,师国臣,等. 油水井井筒数字化、智能化构建分析[J]. 石油钻采工艺,2022,44(5):569–573.

    ZHANG Jiyang, OU Haichen, SHI Guochen, et al. Analysis on digital and intelligent construction of wellbore for oil and water wells[J]. Oil Drilling & Production Technology, 2022, 44(5): 569–573.

    [12] 陈绍凯,安鹏,张能,等. 领域驱动设计在中国海油智能油田建设中的探索与实践[J]. 中国海上油气,2023,35(6):189–196.

    CHEN Shaokai, AN Peng, ZHANG Neng, et al. Exploration and practice of domain-driven design in the construction of CNOOC intelligent oilfield[J]. China Offshore Oil and Gas, 2023, 35(6): 189–196.

    [13]

    KHATRI D, BOTTIGLIERI A, DAS R, et al. Quantification of in-situ cement contamination by electromagnetic acoustic transducer technology: an integrated approach to improved zonal isolation[R]. SPE 187431, 2017.

    [14]

    PATTERSON D, INGRAM S, MATUSZYK P J, et al. Enhanced cement bond evaluation in thick casing utilizing guided acoustic modes generated by electromagnetic acoustic transducers[R]. OTC 27968, 2017.

    [15]

    AZIM M K, IQBAL P, EUIC I. All terrain efficient new electromagnetic cement evaluation tool; effectively defining cement sheath quality where evaluation was not possible[R]. SPE 183990, 2017.

    [16]

    PATTERSON D, BOLSHAKOV A, MATUSZYK P J. Utilization of electromagnetic acoustic transducers in downhole cement evaluation[J]. Petrophysics, 2015, 56(5): 479–492.

    [17] 冉强,蔡键键. 测井技术在石油工程中的应用新进展[J]. 石化技术,2024,31(5):156–158.

    RAN Qiang, CAI Jianjian. New progress in the application of logging technology in petroleum engineering[J]. Petrochemical Industry Technology, 2024, 31(5): 156–158.

    [18] 尹成芳,侯亮,郭晓霞. 2022国外测井技术发展现状与趋势[J]. 世界石油工业,2022,29(6):54–62.

    YIN Chengfang, HOU Liang, GUO Xiaoxia. Present status and trends in development of foreign well logging technologies in 2022[J]. World Petroleum Industry, 2022, 29(6): 54–62.

    [19] 李晓蓉,刘旭丰,张毅,等. 基于分布式光纤声传感的油气井工程监测技术应用与进展[J]. 石油钻采工艺,2022,44(3):309–320.

    LI Xiaorong, LIU Xufeng, ZHANG Yi, et al. Application and progress of oil and gas well monitoring techniques based on distributed optical fiber sensing[J]. Oil Drilling & Production Technology, 2022, 44(3): 309–320.

    [20] 王辉. 光纤分布式测量技术在页岩气产气剖面中的应用[J]. 石油机械,2022,50(8):110–117.

    WANG Hui. Application of distributed optical fiber measurement technology in shale gas production profile[J]. China Petroleum Machinery, 2022, 50(8): 110–117.

    [21] 隋微波,温长云,孙文常,等. 水力压裂分布式光纤传感联合监测技术研究进展[J]. 天然气工业,2023,43(2):87–103.

    SUI Weibo, WEN Changyun, SUN Wenchang, et al. Joint application of distributed optical fiber sensing technologies for hydraulic fracturing monitoring[J]. Natural Gas Industry, 2023, 43(2): 87–103.

    [22] 罗红文,张琴,李海涛,等. 基于分布式光纤测温的致密油水平井产出剖面解释方法[J]. 特种油气藏,2023,30(4):104–112. doi: 10.3969/j.issn.1006-6535.2023.04.013

    LUO Hongwen, ZHANG Qin, LI Haitao, et al. Tight oil horizontal well production profile interpretation method based on distributed temperature sensing[J]. Special Oil & Gas Reservoirs, 2023, 30(4): 104–112. doi: 10.3969/j.issn.1006-6535.2023.04.013

    [23] 孙琪真,范存政,李豪,等. 光纤分布式声波传感技术在石油行业的研究进展[J]. 石油物探,2022,61(1):50–59.

    SUN Qizhen, FAN Cunzheng, LI Hao, et al. Progress of research on optical fiber distributed acoustic sensing technology in petroleum industry[J]. Geophysical Prospecting for Petroleum, 2022, 61(1): 50–59.

    [24] 张旭苹,张益昕,王亮,等. 分布式光纤传感技术研究和应用的现状及未来[J]. 光学学报,2024,44(1):3–65.

    ZHANG Xuping, ZHANG Yixin, WANG Liang, et al. Current status and future of research and applications for distributed fiber optic sensing technology[J]. Acta Optica Sinica, 2024, 44(1): 3–65.

    [25]

    ELSHAHAWI H, HUANG Shan, POLLOCK J, et al. Novel smart cement for improved well integrity evaluation[R]. SPWLA 2018, 2018.

    [26] 刘炜辰. 应用智能水泥提升井筒完整性测井响应能力[J]. 石油管材与仪器,2020,6(2):88–92.

    LIU Weichen. Application of smart cement to improve response of well integrity logging[J]. Petroleum Tubular Goods & Instruments, 2020, 6(2): 88–92.

    [27] 欧进萍,关新春,李惠. 应力自感知水泥基复合材料及其传感器的研究进展[J]. 复合材料学报,2006,23(4):1–8. doi: 10.3321/j.issn:1000-3851.2006.04.001

    OU Jinping, GUAN Xinchun, LI Hui. State-of-the-art of stress-sensing cement composite material and sensors[J]. Acta Materiae Compositae Sinica, 2006, 23(4): 1–8. doi: 10.3321/j.issn:1000-3851.2006.04.001

    [28] 丁思齐,韩宝国,欧进萍. 本征自感知混凝土及其智能结构[J]. 工程力学,2022,39(3):1–10. doi: 10.6052/j.issn.1000-4750.2021.06.ST02

    DING Siqi, HAN Baoguo, OU Jinping. Intrinsic self-sensing concrete for smart structures[J]. Engineering Mechanics, 2022, 39(3): 1–10. doi: 10.6052/j.issn.1000-4750.2021.06.ST02

    [29]

    QIN Hanyao, DING Siqi, ASHOUR A, et al. Revolutionizing infrastructure: the evolving landscape of electricity-based multifunctional concrete from concept to practice[J]. Progress in Materials Science, 2024, 145: 101310. doi: 10.1016/j.pmatsci.2024.101310

    [30]

    ZHANG Bing, XIONG Jiyou, ZHANG Ningsheng, et al. Improved method of processing downhole pressure data on smart wells[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 1115–1126. doi: 10.1016/j.jngse.2016.08.002

    [31]

    OSSAI C I. Modified spatio-temporal neural networks for failure risk prognosis and status forecasting of permanent downhole pressure gauge[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106496. doi: 10.1016/j.petrol.2019.106496

  • 期刊类型引用(6)

    1. 邓才,王振华,王立垒. 近圆形高含硫气藏辐射状分支水平井产量公式. 石油地质与工程. 2022(06): 72-76 . 百度学术
    2. 王苏雯,王寿喜,王力,王勇. 火驱尾气回注井筒流动分布规律. 断块油气田. 2020(01): 99-103 . 百度学术
    3. 刘人玮,杨天宇,万宇飞,蒋曙鸿,黄喆. 海上平台热采放喷气扩散数值模拟研究. 石油化工高等学校学报. 2020(03): 74-79 . 百度学术
    4. 王永佩. 水平井过热蒸汽循环预热井筒传热模拟. 北京石油化工学院学报. 2019(02): 11-16 . 百度学术
    5. 聂帅帅,唐世星,刘可,徐康泰,李江飞,王少征. 数据挖掘诊断X油田低渗透稠油油藏压裂效果的主控因素. 石油地质与工程. 2019(06): 90-94 . 百度学术
    6. 王永佩. 超临界水井筒非等温管流数值模拟. 北京石油化工学院学报. 2019(04): 6-8 . 百度学术

    其他类型引用(1)

图(4)
计量
  • 文章访问数:  340
  • HTML全文浏览量:  57
  • PDF下载量:  170
  • 被引次数: 7
出版历程
  • 收稿日期:  2024-08-09
  • 修回日期:  2024-09-08
  • 录用日期:  2024-09-17
  • 网络出版日期:  2024-09-06
  • 刊出日期:  2024-09-24

目录

    /

    返回文章
    返回