Advancements and Prospects of Monitoring and Intelligent PerceptionTechnology for Wellbore Sealing Integrity
-
摘要:
油气井生产过程中的井筒密封完整性演化信息是保障油气资源安全效益开发的基础,传统测井技术难以满足井筒全生命周期完整性的监测需求,实现井筒、地层信息感知与数字技术的高效融合势在必行。为此,国内外以井筒完整性原位感知技术为主要突破口,在声波监测、光纤传感、自感知水泥浆和永久井下测试装置等方面进行了探索。在总结国内外井筒密封完整性监测与智能感知技术进展的基础上,分析了存在的不足与难题,从声波监测技术、分布式光纤传感监测技术、智能水泥浆体系和井下永久测试装置等4方面进行了发展展望,并提出了发展建议,以推动构建智能井筒,实时精准掌握油气井井筒健康状况,促进油气工程技术安全、高效、智能化升级。
Abstract:A comprehensive knowledge of wellbore sealing integrity evolution information during the oil and gas well production is the foundation to ensure the safe and efficient development of oil and gas resources. Traditional logging technology can not meet the needs of monitoring the integrity of the wellbore throughout the whole life cycle, and it is imperative to realize the efficient integration of the wellbore, formation information perception, and digital technology. Therefore, with the in-situ perception technology of wellbore integrity as the main breakthrough, the investigation has been carried out in China and overseas in terms of acoustic monitoring, optical fiber sensing, self-sensing cement slurry, and permanent downhole testing equipment. Based on summarizing the advancements of wellbore sealing integrity monitoring and intelligent perception technology in China and abroad, the existing disadvangates and problems were analyzed. In addition, the development prospect was also made from four aspects: acoustic monitoring technology, distributed optical fiber sensing monitoring technology, intelligent cement slurry system, and permanent downhole testing equipment, so as to build a digital wellbore, accurately understand the dynamic information of the wellbore condition of oil and gas wells in real time, and promote the safe, efficient, and intelligent upgrading of oil and gas engineering .
-
Keywords:
- well integrity /
- full life cycle /
- intellisense /
- smart wellbore /
- technological progress /
- development proposal
-
-
-
[1] 丁士东,陆沛青,郭印同,等. 复杂环境下水泥环全生命周期密封完整性研究进展与展望[J]. 石油钻探技术,2023,51(4):104–113. DING Shidong, LU Peiqing, GUO Yintong, et al. Progress and prospect on the study of full life cycle sealing integrity of cement sheath in complex environments[J]. Petroleum Drilling Techniques, 2023, 51(4): 104–113.
[2] 曾义金. 中国石化深层超深层油气井固井技术新进展与发展建议[J]. 石油钻探技术,2023,51(4):66–73. doi: 10.11911/syztjs.2023035 ZENG Yijin. Novel advancements and development suggestions of cementing technologies for deep and ultra-deep wells of Sinopec[J]. Petroleum Drilling Techniques, 2023, 51(4): 66–73. doi: 10.11911/syztjs.2023035
[3] 贾承造,张永峰,赵霞. 中国天然气工业发展前景与挑战[J]. 天然气工业,2014,34(2):1–11. doi: 10.3787/j.issn.10000976.2014.02.001 JIA Chengzao, ZHANG Yongfeng, ZHAO Xia. Prospects of and challenges to natural gas industry development in China[J]. Natural Gas Industry, 2014, 34(2): 1–11. doi: 10.3787/j.issn.10000976.2014.02.001
[4] 李剑,佘源琦,高阳,等. 中国陆上深层—超深层天然气勘探领域及潜力[J]. 中国石油勘探,2019,24(4):403–417. LI Jian, SHE Yuanqi, GAO Yang, et al. Onshore deep and ultra-deep natural gas exploration fields and potentials in China[J]. China Petroleum Exploration, 2019, 24(4): 403–417.
[5] 祝效华,李瑞,刘伟吉,等. 深层页岩气水平井高效破岩提速技术发展现状[J]. 西南石油大学学报(自然科学版),2023,45(4):1–18. ZHU Xiaohua, LI Rui, LIU Weiji, et al. Development status of high-efficiency rock-breaking and speed-increasing technologies for deep shale gas horizontal wells[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(4): 1–18.
[6] 张锦宏,周爱照,成海,等. 中国石化石油工程技术新进展与展望[J]. 石油钻探技术,2023,51(4):149–158. ZHANG Jinhong, ZHOU Aizhao, CHENG Hai, et al. New progress and prospects for Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techniques, 2023, 51(4): 149–158.
[7] 苏义脑,路保平,刘岩生,等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺,2020,42(5):527–542. SU Yinao, LU Baoping, LIU Yansheng, et al. Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5): 527–542.
[8] 曾义金. 深层页岩气开发工程技术进展[J]. 石油科学通报,2019,4(3):233–241. ZENG Yijin. Progress in engineering technologies for the development of deep shale gas[J]. Petroleum Science Bulletin, 2019, 4(3): 233–241.
[9] 袁建强. 中国石化页岩气超长水平段水平井钻井技术新进展与发展建议[J]. 石油钻探技术,2023,51(4):81–87. YUAN Jianqiang. New progress and development proposals of Sinopec’s drilling technologies for ultra-long horizontal shale gas wells[J]. Petroleum Drilling Techniques, 2023, 51(4): 81–87.
[10] 张茹,吕游,张泽天,等. 深地工程多维信息感知与智能建造的发展与展望[J]. 煤炭学报,2024,49(3):1259–1290. ZHANG Ru, LYU You, ZHANG Zetian, et al. Development and prospect of multidimensional information perception and intelligent construction in deep earth engineering[J]. Journal of China Coal Society, 2024, 49(3): 1259–1290.
[11] 张激扬,欧海晨,师国臣,等. 油水井井筒数字化、智能化构建分析[J]. 石油钻采工艺,2022,44(5):569–573. ZHANG Jiyang, OU Haichen, SHI Guochen, et al. Analysis on digital and intelligent construction of wellbore for oil and water wells[J]. Oil Drilling & Production Technology, 2022, 44(5): 569–573.
[12] 陈绍凯,安鹏,张能,等. 领域驱动设计在中国海油智能油田建设中的探索与实践[J]. 中国海上油气,2023,35(6):189–196. CHEN Shaokai, AN Peng, ZHANG Neng, et al. Exploration and practice of domain-driven design in the construction of CNOOC intelligent oilfield[J]. China Offshore Oil and Gas, 2023, 35(6): 189–196.
[13] KHATRI D, BOTTIGLIERI A, DAS R, et al. Quantification of in-situ cement contamination by electromagnetic acoustic transducer technology: an integrated approach to improved zonal isolation[R]. SPE 187431, 2017.
[14] PATTERSON D, INGRAM S, MATUSZYK P J, et al. Enhanced cement bond evaluation in thick casing utilizing guided acoustic modes generated by electromagnetic acoustic transducers[R]. OTC 27968, 2017.
[15] AZIM M K, IQBAL P, EUIC I. All terrain efficient new electromagnetic cement evaluation tool; effectively defining cement sheath quality where evaluation was not possible[R]. SPE 183990, 2017.
[16] PATTERSON D, BOLSHAKOV A, MATUSZYK P J. Utilization of electromagnetic acoustic transducers in downhole cement evaluation[J]. Petrophysics, 2015, 56(5): 479–492.
[17] 冉强,蔡键键. 测井技术在石油工程中的应用新进展[J]. 石化技术,2024,31(5):156–158. RAN Qiang, CAI Jianjian. New progress in the application of logging technology in petroleum engineering[J]. Petrochemical Industry Technology, 2024, 31(5): 156–158.
[18] 尹成芳,侯亮,郭晓霞. 2022国外测井技术发展现状与趋势[J]. 世界石油工业,2022,29(6):54–62. YIN Chengfang, HOU Liang, GUO Xiaoxia. Present status and trends in development of foreign well logging technologies in 2022[J]. World Petroleum Industry, 2022, 29(6): 54–62.
[19] 李晓蓉,刘旭丰,张毅,等. 基于分布式光纤声传感的油气井工程监测技术应用与进展[J]. 石油钻采工艺,2022,44(3):309–320. LI Xiaorong, LIU Xufeng, ZHANG Yi, et al. Application and progress of oil and gas well monitoring techniques based on distributed optical fiber sensing[J]. Oil Drilling & Production Technology, 2022, 44(3): 309–320.
[20] 王辉. 光纤分布式测量技术在页岩气产气剖面中的应用[J]. 石油机械,2022,50(8):110–117. WANG Hui. Application of distributed optical fiber measurement technology in shale gas production profile[J]. China Petroleum Machinery, 2022, 50(8): 110–117.
[21] 隋微波,温长云,孙文常,等. 水力压裂分布式光纤传感联合监测技术研究进展[J]. 天然气工业,2023,43(2):87–103. SUI Weibo, WEN Changyun, SUN Wenchang, et al. Joint application of distributed optical fiber sensing technologies for hydraulic fracturing monitoring[J]. Natural Gas Industry, 2023, 43(2): 87–103.
[22] 罗红文,张琴,李海涛,等. 基于分布式光纤测温的致密油水平井产出剖面解释方法[J]. 特种油气藏,2023,30(4):104–112. doi: 10.3969/j.issn.1006-6535.2023.04.013 LUO Hongwen, ZHANG Qin, LI Haitao, et al. Tight oil horizontal well production profile interpretation method based on distributed temperature sensing[J]. Special Oil & Gas Reservoirs, 2023, 30(4): 104–112. doi: 10.3969/j.issn.1006-6535.2023.04.013
[23] 孙琪真,范存政,李豪,等. 光纤分布式声波传感技术在石油行业的研究进展[J]. 石油物探,2022,61(1):50–59. SUN Qizhen, FAN Cunzheng, LI Hao, et al. Progress of research on optical fiber distributed acoustic sensing technology in petroleum industry[J]. Geophysical Prospecting for Petroleum, 2022, 61(1): 50–59.
[24] 张旭苹,张益昕,王亮,等. 分布式光纤传感技术研究和应用的现状及未来[J]. 光学学报,2024,44(1):3–65. ZHANG Xuping, ZHANG Yixin, WANG Liang, et al. Current status and future of research and applications for distributed fiber optic sensing technology[J]. Acta Optica Sinica, 2024, 44(1): 3–65.
[25] ELSHAHAWI H, HUANG Shan, POLLOCK J, et al. Novel smart cement for improved well integrity evaluation[R]. SPWLA 2018, 2018.
[26] 刘炜辰. 应用智能水泥提升井筒完整性测井响应能力[J]. 石油管材与仪器,2020,6(2):88–92. LIU Weichen. Application of smart cement to improve response of well integrity logging[J]. Petroleum Tubular Goods & Instruments, 2020, 6(2): 88–92.
[27] 欧进萍,关新春,李惠. 应力自感知水泥基复合材料及其传感器的研究进展[J]. 复合材料学报,2006,23(4):1–8. doi: 10.3321/j.issn:1000-3851.2006.04.001 OU Jinping, GUAN Xinchun, LI Hui. State-of-the-art of stress-sensing cement composite material and sensors[J]. Acta Materiae Compositae Sinica, 2006, 23(4): 1–8. doi: 10.3321/j.issn:1000-3851.2006.04.001
[28] 丁思齐,韩宝国,欧进萍. 本征自感知混凝土及其智能结构[J]. 工程力学,2022,39(3):1–10. doi: 10.6052/j.issn.1000-4750.2021.06.ST02 DING Siqi, HAN Baoguo, OU Jinping. Intrinsic self-sensing concrete for smart structures[J]. Engineering Mechanics, 2022, 39(3): 1–10. doi: 10.6052/j.issn.1000-4750.2021.06.ST02
[29] QIN Hanyao, DING Siqi, ASHOUR A, et al. Revolutionizing infrastructure: the evolving landscape of electricity-based multifunctional concrete from concept to practice[J]. Progress in Materials Science, 2024, 145: 101310. doi: 10.1016/j.pmatsci.2024.101310
[30] ZHANG Bing, XIONG Jiyou, ZHANG Ningsheng, et al. Improved method of processing downhole pressure data on smart wells[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 1115–1126. doi: 10.1016/j.jngse.2016.08.002
[31] OSSAI C I. Modified spatio-temporal neural networks for failure risk prognosis and status forecasting of permanent downhole pressure gauge[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106496. doi: 10.1016/j.petrol.2019.106496
-
期刊类型引用(27)
1. 袁亮亮,陈亚舟,孙大伟,张红岗,魏波. 超低渗油藏整体宽带压裂技术研究与应用. 石化技术. 2024(01): 41-43 . 百度学术
2. 王哲,曹广胜,白玉杰,王培伦,王鑫. 低渗透油藏提高采收率技术现状及展望. 特种油气藏. 2023(01): 1-13 . 百度学术
3. 慕立俊,李向平,喻文锋,卜军,李蕾,刘铁楼. 超低渗透油藏水平井重复压裂新老缝合理配比研究. 石油钻探技术. 2023(03): 97-104 . 本站查看
4. 雷群,翁定为,管保山,师俊峰,才博,何春明,孙强,黄瑞. 中美页岩油气开采工程技术对比及发展建议. 石油勘探与开发. 2023(04): 824-831 . 百度学术
5. LEI Qun,WENG Dingwei,GUAN Baoshan,SHI Junfeng,CAI Bo,HE Chunming,SUN Qiang,HUANG Rui. Shale oil and gas exploitation in China: Technical comparison with US and development suggestions. Petroleum Exploration and Development. 2023(04): 944-954 . 必应学术
6. 周怡,于世虎,郭德斌. 暂堵技术在致密气储层应用探析. 能源与节能. 2023(11): 14-18+23 . 百度学术
7. 尹虎,董满仓,卢伟峰,褚晓红. 非交联黄原胶清洁压裂技术研究及应用——以延长油田FJ29-5井为例. 中国石油和化工标准与质量. 2021(11): 143-144+149 . 百度学术
8. 李熠,张宁利,刘建升,周长顺,于波,马腾. 中高含水油井宽带压裂技术试验及应用. 石油化工应用. 2021(08): 58-61 . 百度学术
9. 陈清,曹伟佳,田中原,卢祥国,闫冬. 自悬浮支撑剂覆膜材料对储层渗透率影响研究. 石油化工高等学校学报. 2020(01): 42-47 . 百度学术
10. 杨金峰,张进科,张倩,苟利鹏,张满. 暂堵压裂造多缝工艺技术在姬塬油田的研究与应用. 石油化工应用. 2020(07): 46-51 . 百度学术
11. 王红娟,洪千里,李伟峰,杨全枝,高明星. 低渗透浅层油藏裸眼井复产挖潜技术应用. 非常规油气. 2020(04): 112-118 . 百度学术
12. 董小卫,田志华,舒博钊,南荣丽,韩光耀,刘亚明,赵文龙. 水平井不动管柱无限级分段重复压裂技术研究. 石油矿场机械. 2019(01): 60-63 . 百度学术
13. 徐昆,李达,郭玉杰,范希良,赵立强. DMF新型超分子暂堵剂研发及性能评价. 油气藏评价与开发. 2019(01): 51-55 . 百度学术
14. 李国雄,史飞,刘鼎,陈向东,程某存,徐少华,赵艳林. 子长油田肖家河区长4+5、长6储层压裂特征研究. 山东化工. 2019(03): 80-82 . 百度学术
15. 齐月魁,李东平,张宏峰,黄满良,赵涛,齐振. 基于膨胀管封堵的老井页岩油体积压裂技术研究. 天津科技. 2019(11): 49-55 . 百度学术
16. 隋阳,刘德基,刘建伟,蒋明,刘建辉,张宁县. 低成本致密油层水平井重复压裂新方法——以吐哈油田马56区块为例. 石油钻采工艺. 2018(03): 369-374 . 百度学术
17. 王坤,葛腾泽,曾雯婷. 低产油气井强制裂缝转向重复压裂技术. 石油钻探技术. 2018(02): 81-86 . 本站查看
18. 秦金立. 选择性重复压裂工具关键技术. 石油钻探技术. 2018(04): 71-77 . 本站查看
19. 陶亮,郭建春,李凌铎,李慧,贺娜. 致密油藏水平井重复压裂多级选井方法研究. 特种油气藏. 2018(04): 67-71 . 百度学术
20. 李达,王乐,衣德强,朱李安,胡晓宇,崔云群,党小理,崔露. 苏里格致密砂岩压裂中转向剂用量与转向角的关系. 钻井液与完井液. 2018(04): 108-113 . 百度学术
21. 段景杰,姚振杰,黄春霞,赵永攀. 特低渗透油藏CO_2驱流度控制技术. 断块油气田. 2017(02): 190-193 . 百度学术
22. 朱金智,雷明,任玲玲,王晓强,徐国何,黄维安. 致密砂岩气藏高温高压敏感性评价及机理探讨——以塔里木盆地B区块致密气藏为例. 断块油气田. 2017(02): 222-225 . 百度学术
23. 温永利,陈丕国,唐颖超. 低渗透油田压裂技术及发展趋势探讨. 中国石油石化. 2017(04): 85-86 . 百度学术
24. 刘佳. 采油井重复压裂裂缝失效原因研究. 化工管理. 2016(19): 171 . 百度学术
25. 王疆宁. 压裂技术在油田低渗透储层改造中的应用. 石化技术. 2016(11): 95 . 百度学术
26. 王国壮,梁承春,孙招锋,徐超. 红河油田长6特低渗油藏多元复合酸降压增注技术. 石油钻探技术. 2016(04): 96-101 . 本站查看
27. 马金良,潘娟芳,王林,张武,李楠,祝道平. 自封压缩式封隔器的研制与应用. 石油钻探技术. 2015(06): 120-124 . 本站查看
其他类型引用(19)