Application and Prospect of Digital Twin in Oil and Gas Drilling & Completion Engineering
-
摘要:
数字孪生技术在数据实时分析、工程设计优化和设备健康诊断等方面已展现出巨大潜力,成为油气行业数字化转型发展、加速油气行业新一代技术创新的关键技术,但受钻完井工程中软硬件不完善与研究方法不明确的制约,目前尚处于起步阶段。在论述油气田钻完井工程数字孪生技术的概念和技术特点的基础上,重点介绍了数字孪生技术在钻完井工程的钻前设计、过程监控、作业培训方面的最新应用进展,提出了数字孪生技术在钻完井工程中的应用构成方案,探讨了数字孪生的关键技术方法;并分析了数字孪生技术在钻完井工程及其相关行业应用中存在的问题,提出了油气行业数字孪生技术发展建议。这可为数字孪生技术在油气行业的应用提供理论基础与方法指导,加速油气行业数字化进程,提升油气田开发效率,推动智慧油田全面构建。
Abstract:Digital twin has shown great potential in real-time data analysis, engineering design optimization, and equipment health diagnosis and has become a key technology for achieving the digital transformation development of the oil and gas industry and accelerating the next generation of technological innovation in the oil and gas industry. However, due to the imperfect software and hardware in drilling & completion engineering and the unclear research methods, the technology is still in the initial stage. On the basis of discussing the concept and technical characteristics of digital twin in the drilling & completion engineering of oil and gas fields, the latest application progress of digital twin in pre-drilling design, monitoring during drilling, and completion, and operation training of the drilling & completion engineering was introduced, and the application scheme of digital twin in drilling & completion engineering was proposed. The key technologies and methods of digital twin were discussed, and the problems existing in the application of digital twin in drilling & completion engineering and related industries were analyzed. In addition, some suggestions for the development of digital twin in the oil and gas industry were put forward. The results can provide a theoretical basis and method guidance for the application of digital twin in the oil and gas industry, so as to accelerate the digitization process of the oil and gas industry, improve the development efficiency of oil and gas fields, and promote the comprehensive construction of smart oil fields.
-
Keywords:
- oil well /
- gas well /
- drilling /
- completion /
- digital twin /
- technology status /
- development proposal
-
-
-
[1] FEDER J. Will this be the decade of full digital twins for well construction?[J]. Journal of Petroleum Technology, 2021, 73(3): 34–37. doi: 10.2118/0321-0034-JPT
[2] SAID M M, PILGRIM R, RIDEOUT G, et al. Theoretical development of a digital-twin based automation system for oil well drilling rigs[R]. SPE 208902, 2022.
[3] 贾承造. 中国石油工业上游发展面临的挑战与未来科技攻关方向[J]. 石油学报,2020,41(12):1445–1464. doi: 10.7623/syxb202012001 JIA Chengzao. Development challenges and future scientific and technological researches in China's petroleum industry upstream[J]. Acta Petrolei Sinica, 2020, 41(12): 1445–1464. doi: 10.7623/syxb202012001
[4] GLAESSGEN E, STARGEL D. The digital twin paradigm for future NASA and U. S. air force vehicles[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: American Institute of Aeronautics and Astronautics, 2012: AIAA 2012–2018.
[5] ZBOROWSKI M. Finding meaning, application for the much-discussed “digital twin”[J]. Journal of Petroleum Technology, 2018, 70(6): 26–32. doi: 10.2118/0618-0026-JPT
[6] 陶飞,张贺,戚庆林,等. 数字孪生模型构建理论及应用[J]. 计算机集成制造系统,2021,27(1):1–15. TAO Fei, ZHANG He, QI Qinglin, et al. Theory of digital twin modeling and its application[J]. Computer Integrated Manufacturing Systems, 2021, 27(1): 1–15.
[7] QI Qinglin, TAO Fei, HU Tianliang, et al. Enabling technologies and tools for digital twin[J]. Journal of Manufacturing Systems, 2021, 58(Part B): 3–21.
[8] WANG Mengmeng, WANG Chengye, HNYDIUK-STEFAN A, et al. Recent progress on reliability analysis of offshore wind turbine support structures considering digital twin solutions[J]. Ocean Engineering, 2021, 232: 109168. doi: 10.1016/j.oceaneng.2021.109168
[9] 李德仁. 基于数字孪生的智慧城市[J]. 互联网天地,2021(7):12. LI Deren. Smart city based on digital twins[J]. China Internet, 2021(7): 12.
[10] 胡春宏,郭庆超,张磊,等. 数字孪生流域模型研发若干问题思考[J]. 中国水利,2022(20):7–10. doi: 10.3969/j.issn.1000-1123.2022.20.012 HU Chunhong, GUO Qingchao, ZHANG Lei, et al. Thinking on some problems in the development of professional models for digital twin basins[J]. China Water Resources, 2022(20): 7–10. doi: 10.3969/j.issn.1000-1123.2022.20.012
[11] 杨传书. 数字孪生技术在钻井领域的应用探索[J]. 石油钻探技术,2022,50(3):10–16. doi: 10.11911/syztjs.2022068 YANG Chuanshu. Exploration for the application of digital twin technology in drilling engineering[J]. Petroleum Drilling Techniques, 2022, 50(3): 10–16. doi: 10.11911/syztjs.2022068
[12] 张好林,杨传书,李昌盛,等. 钻井数字孪生系统设计与研发实践[J]. 石油钻探技术,2023,51(3):58–65. doi: 10.11911/syztjs.2023011 ZHANG Haolin, YANG Chuanshu, LI Changsheng, et al. Design and research practice of a drilling digital twin system[J]. Petroleum Drilling Techniques, 2023, 51(3): 58–65. doi: 10.11911/syztjs.2023011
[13] WEYER S, MEYER T, OHMER M, et al. Future modeling and simulation of CPS-based factories: an example from the automotive industry[J]. IFAC-PapersOnLine, 2016, 49(31): 97–102. doi: 10.1016/j.ifacol.2016.12.168
[14] TAO Fei, ZHANG He, LIU Ang, et al. Digital twin in industry: state-of-the-art[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2405–2415. doi: 10.1109/TII.2018.2873186
[15] MACPHERSON J. Technology focus: drilling systems automation and management[J]. Journal of Petroleum Technology, 2020, 72(2): 60. doi: 10.2118/0220-0060-JPT
[16] FEDER J. Upstream digitalization is proving itself in the real world[J]. Journal of Petroleum Technology, 2020, 72(4): 26–28. doi: 10.2118/0420-0026-JPT
[17] FEDER J. BHA-design approach improves drilling performance and wellbore quality[J]. Journal of Petroleum Technology, 2020, 72(12): 57–58. doi: 10.2118/1220-0057-JPT
[18] IMOMOH V B, TOYOBO O, OKAFOR R. Creating a digital twin of part of the earth subsurface through reservoir navigation service[R]. SPE 203621, 2020.
[19] WEI Li, PU Ding, HUANG Min, et al. Applications of digital twins to offshore oil/gas exploitation: from visualization to evaluation[J]. IFAC-PapersOnLine, 2020, 53(5): 738–743. doi: 10.1016/j.ifacol.2021.04.166
[20] BHOWMIK S, NAIK H. Subsea structure and pipeline design automation using digital field twin[R]. OTC 30909, 2020.
[21] ISBELL M R, MANOCHA M R, MANGOLD B R, et al. A novel use of digital technologies for more effective multi-party well planning and execution[R]. SPE 204050, 2021.
[22] NADHAN D, MAYANI M G, ROMMETVEIT R. Drilling with digital twins[R]. SPE 191388, 2018.
[23] 郭永峰. 国际巨头应用“数字孪生体”技术降低油气开采成本[J]. 中国石油企业,2021(7):68–69. GUO Yongfeng. International giants apply “digital twin” technology to reduce oil and gas extraction costs[J]. China Petroleum Enterprise, 2021(7): 68–69.
[24] FERRARA P, MACCARINI G R, POLONI R, et al. Virtual reality: new concepts for virtual drilling environment and well digital twin[R]. IPTC 20267, 2020.
[25] DOUGLAS A, RIOS V. How to achieve project and operational certainty using a digital twin[R]. SPE 195766, 2019.
[26] BURRAFATO S, MALIARDI A, FERRARA P, et al. Virtual reality in D & C: new approaches towards well digital twins[R]. OMC 2019-1240, 2019.
[27] 孙巧雷,冯定,刘旭辉,等. 油气装备新进展课程案例教学设计与实践:以海上“蓝鲸1号”半潜式钻井平台为例[J]. 中国现代教育装备,2023,13:137–139. SUN Qiaolei, FENG Ding, LIU Xuhui, et al. The case teaching design and practice of advance of oil field equipment: taking the offshore semi-submersible drilling and production platform "Blue Whale-1" as an example[J]. China Modern Educational Equipment, 2023, 13: 137–139.
[28] FEDER J. Recovering more than 70% from the Johan Sverdrup Field[J]. Journal of Petroleum Technology, 2020, 72(9): 62–63. doi: 10.2118/0920-0062-JPT
[29] FEDER J. Data exchange and collaboration realize automated drilling control potential[J]. Journal of Petroleum Technology, 2021, 73(2): 47–48. doi: 10.2118/0221-0047-JPT
[30] KARPOV R B, ZUBKOV D Y, MURLAEV A V, et al. Drilling performance and data quality control with live digital twin[R]. SPE 206527, 2021.
[31] SHI Jibin, DOURTHE L, LI D, et al. Real-time reamer vibration predicting, monitoring, and decision-making using hybrid modeling and a process digital twin[R]. SPE 208795, 2022.
[32] SHIRANGI M G, FURLONG E, SIMS K S. Digital twins for well planning and bit dull grade prediction[R]. SPE 200740, 2020.
[33] ARÉVALO P J, HUMMES O, FORSHAW M. Integrated real-time simulation in an earth model–automating drilling and driving efficiency[R]. SPE 204069, 2021.
[34] GAO Zhuo, HYDER S Z. Using autonomous control to stabilize well performance without the downhole pressure gauge[R]. SPE 211042, 2022.
[35] KALININ O, ELFIMOV M, BAYBOLOV T. Exploration drilling management system based on digital twins technology[R]. SPE 205994, 2021.
[36] JEFFERY C, CREEGAN A. Adaptive drilling application uses AI to enhance on-bottom drilling performance[J]. Journal of Petroleum Technology, 2020, 72(8): 45–47. doi: 10.2118/0820-0045-JPT
[37] dos SANTOS M V, DUARTE ROSA R M, de OLIVEIRA L A , et al. Development and deployment of digital twin for production and well integrity[R]. SPE 210260, 2022.
[38] ARÉVALO P J, FORSHAW M, STAROSTIN A, et al. Monitoring hole-cleaning during drilling operations: case studies with a real-time transient model[R]. SPE 210244, 2022.
[39] REYES R A, MACHADO M, TORRE M, et al. Digital wellhead integrated system for production management[R]. SPE 211158, 2022.
[40] KUCUKCOBAN S, KLUK D J, PESTANA R G, et al. A digital twin for computing dynamic watch circles on a dynamically positioned MODU[R]. OTC 31709, 2022.
[41] RODRIGUEZ D, CLARE P, SRIKONDA R, et al. Stampede digital twin: an advanced solution for process equipment condition monitoring[R]. SPE 210106, 2022.
[42] WU Bo, KOU Yufeng, LIU Jun, et al. Research on the application of digital twin technology in the structural safety assessment of deep-water semi-submersible platforms[R]. ISOPE I-22-296, 2022.
[43] CARPENTER C. Johan Sverdrup’s digital operations drive efficiency, safety[J]. Journal of Petroleum Technology, 2020, 72(9): 67–68. doi: 10.2118/0920-0067-JPT
-
期刊类型引用(14)
1. 闫炎,韩礼红,刘永红,杨尚谕,曹婧,牟易升. 全尺寸PDC钻头旋转冲击破岩过程数值模拟. 石油机械. 2023(06): 36-42 . 百度学术
2. 刘永旺,魏森,管志川,邹德永,梁红军,陶兴华,玄令超,张建龙. 旋转冲击钻井方法硬岩破岩钻进特性的实验研究. 实验技术与管理. 2022(05): 44-48+59 . 百度学术
3. 赵建军,赵晨熙,崔晓杰,胡群爱. 减震稳扭旋冲钻井提速工具可变节流口特性分析. 机械科学与技术. 2021(04): 592-597 . 百度学术
4. 王方祥,张乾,姜有才,郝华松,杨鑫,李道松. 连续油管长水平段防自锁技术. 油气井测试. 2021(02): 25-29 . 百度学术
5. 胡群爱,孙连忠,张进双,张俊,刘仕银. 硬地层稳压稳扭钻井提速技术. 石油钻探技术. 2019(03): 107-112 . 本站查看
6. 韩强辉,黄志龙,杨焕英,惠艳妮,樊莲莲,李丽. 水平井柱塞气举排液技术在长庆气田的应用. 石油钻采工艺. 2018(02): 210-214 . 百度学术
7. 李玮,李兵,李卓伦,闫立鹏. 脉冲式振动破岩工具设计及模拟分析. 中国煤炭地质. 2018(09): 56-61+77 . 百度学术
8. 梁志新. 螺杆驱动旋冲钻井工具的设计及试验应用. 石化技术. 2017(03): 33+46 . 百度学术
9. 许军富,赵洪山,于海叶,徐永辉,李东昊. 空气锤钻井技术在哈深201井火成岩地层的应用. 石油钻采工艺. 2017(06): 683-687 . 百度学术
10. 陈明,黄志远,马庆涛,刘云鹏,葛鹏飞,夏广强. 马深1井钻井工程设计与施工. 石油钻探技术. 2017(04): 15-20 . 本站查看
11. 闫炎,管志川,玄令超,呼怀刚,庄立. 复合冲击条件下PDC钻头破岩效率试验研究. 石油钻探技术. 2017(06): 24-30 . 本站查看
12. 徐超,郝婷婷,徐海波. 弹簧蓄能激发式旋转冲击钻井装置设计测试. 中国新技术新产品. 2017(10): 60-61 . 百度学术
13. 李玮,凌鑫,赵欢,李思琪. 石油钻井用液动破岩工具及研究进展. 能源与环保. 2017(11): 24-29 . 百度学术
14. 韩强辉. 适用于水平气井的新型自缓冲柱塞气举排液装置的设计及应用——以鄂尔多斯盆地长庆气区为例. 天然气工业. 2016(12): 67-71 . 百度学术
其他类型引用(7)