Processing math: 100%

基于自适应差分脉码调制的远探测声波测井数据井下压缩算法

郝小龙, 高国寅, 谭海峰, 杨诚, 李岳桓

郝小龙,高国寅,谭海峰,等. 基于自适应差分脉码调制的远探测声波测井数据井下压缩算法[J]. 石油钻探技术,2024,52(6):148−155. DOI: 10.11911/syztjs.2024078
引用本文: 郝小龙,高国寅,谭海峰,等. 基于自适应差分脉码调制的远探测声波测井数据井下压缩算法[J]. 石油钻探技术,2024,52(6):148−155. DOI: 10.11911/syztjs.2024078
HAO Xiaolong, GAO Guoyin, TAN Haifeng, et al. Downhole compression algorithm for remote detection acoustic logging data based on adaptive differential pulse code modulation [J]. Petroleum Drilling Techniques, 2024, 52(6):148−155. DOI: 10.11911/syztjs.2024078
Citation: HAO Xiaolong, GAO Guoyin, TAN Haifeng, et al. Downhole compression algorithm for remote detection acoustic logging data based on adaptive differential pulse code modulation [J]. Petroleum Drilling Techniques, 2024, 52(6):148−155. DOI: 10.11911/syztjs.2024078

基于自适应差分脉码调制的远探测声波测井数据井下压缩算法

基金项目: 国家自然科学基金项目“基于等离子体技术的新型高分辨率远探测声波测井声源研究”(编号:41904112)、陕西省自然科学基础研究计划项目“电缆式方位远探测声波测井数据井下压缩方法研究”(编号:2024JC-YBMS-201)和陕西省教育厅专项“三维声波测井井下数据实时压缩方法研究”(编号:22JK0506)联合资助。
详细信息
    作者简介:

    郝小龙(1988—),男,陕西延安人。2011年毕业于中国石油大学(华东)勘查技术与工程专业,2017年获中国石油大学(北京)地质资源与地质工程专业博士学位,副教授,主要从事测井方法与仪器、旋转导向钻井等领域的教学与科研工作。E-mail:haoxl315024@163.com

  • 中图分类号: P631.8+14

Downhole Compression Algorithm for Remote Detection Acoustic Logging Data Based on Adaptive Differential Pulse Code Modulation

  • 摘要:

    远探测声波测井的测井数据量非常大,给电缆实时上传所有数据和快速测井带来巨大挑战。为解决远探测声波测井实时传输问题,在分析远探测声波测井全波列数据特征的基础上,提出了一种基于差值非均匀量化和自适应编码的井下测井数据压缩算法,设计了实现该算法的硬件系统、井下压缩软件和地面解压缩软件,利用水域试验数据和实际测井数据测试了该算法的基本性能和扩展性能。结果表明:该算法的压缩率约为50%,全波列波形、直达波和反射波首波峰值处的失真度均在3%以内;该算法的执行时间和所需运行存储空间均满足高速采集和实时传输的要求。此外,该算法在不同软硬件环境和数据特性下的适应性和稳定性较好。研究结果表明,采用该算法可以压缩远探测声波测井数据,提高电缆传输速率和远探测声波测井效率。

    Abstract:

    Remote detection acoustic logging has huge amount of data, which brings a great challenge to upload all data in real time for cable and conduct fast logging. In order to solve the problem of real-time transmission of remote detection acoustic logging, a downhole logging data compression algorithm based on differential non-uniform quantization and adaptive coding was proposed after analyzing the characteristics of the full waveform data of remote detection acoustic logging. The hardware system, downhole compression software, and ground decompression software were designed to implement this algorithm. The basic and expansion performance of the algorithm were tested using water experiment data and borehole logging data. The results show that the compression rate of the algorithm is approximately 50%, and the distortions of the full waveform, as well as those in the first-peak region of the direct wave and the reflected wave, are all within 3%. The execution time and required operational storage space of the algorithm can meet the requirements of fast acquisition and real-time transmission. In addition, this algorithm has good adaptability and stability under different hardware and software environments and data characteristics. The results also indicate that the proposed algorithm can compress the remote detection acoustic logging data, improving the cable transmission rate and remote detection acoustic logging speed.

  • 图  1   远探测反射声波测井全波列波形及其频谱

    Figure  1.   Full waveform and spectrum of remote detection acoustic logging

    图  2   基于DPCM的声波测井数据压缩原理

    Figure  2.   Compression principle of acoustic logging data based on DPCM

    图  3   实现数据压缩算法的硬件

    Figure  3.   Hardware for implementing data compression algorithm

    图  4   DPCM压缩算法的流程

    Figure  4.   Flowchart of DPCM compression algorithm

    图  5   重构波形与原始波形的对比

    Figure  5.   Comparison between reconstructed waveform and original waveform

    图  6   重构波形的绝对误差曲线

    Figure  6.   Absolute error curve of reconstructed waveform

    图  7   直达波首峰区域重构波形与原始波形的对比

    Figure  7.   Comparison between reconstructed waveform and original waveform in first-peak region of direct wave

    图  8   直达波首峰区域重构波形的绝对误差曲线

    Figure  8.   Absolute error curve of reconstructed waveform in first-peak region of direct wave

    图  9   反射波首峰区域重构波形与原始波形的对比

    Figure  9.   Comparison between reconstructed waveform and original waveform in first-peak region of reflected wave

    图  10   反射波首峰区域重构波形的绝对误差曲线

    Figure  10.   Absolute error curve of reconstructed waveform in first-peak region of reflected wave

    图  11   实际声波测井数据及处理结果

    Figure  11.   Actual acoustic logging data and processing results

    表  1   量化与编码的数据域定义

    Table  1   Data field definitions of quantization and encoding

    差值绝对值范围 符号码域 段落码域 段落码值 区间码域 区间码值 最大绝对误差 最大相对误差,%
    0~7 bit 7 bit 6-3 8 bit 2-0 0-7 0 0
    8~15 bit 7 bit 6-3 9 bit 2-0 0-7 0 0
    16~23 bit 7 bit 6-3 10 bit 2-0 0-7 0 0
    24~31 bit 7 bit 6-3 11 bit 2-0 0-7 0 0
    32~47 bit 7 bit 6-3 12 bit 2-0 0-7 1 3.125
    48~63 bit 7 bit 6-3 13 bit 2-0 0-7 1 2.083
    64~95 bit 7 bit 6-3 14 bit 2-0 0-7 2 3.125
    96~127 bit 7 bit 6-3 15 bit 2-0 0-7 2 2.083
    128~255 bit 7 bit 6-4 0 bit 3-0 0-15 4 3.125
    256~511 bit 7 bit 6-4 1 bit 3-0 0-15 8 3.125
    512~1 023 bit 7 bit 6-4 2 bit 3-0 0-15 16 3.125
    1 024~2 047 bit 7 bit 6-4 3 bit 3-0 0-15 32 3.125
    2 048~4 095 bit 7 bit 6-4 4 bit 3-0 0-15 64 3.125
    4 096~8 191 bit 7 bit 6-4 5 bit 3-0 0-15 128 3.125
    8 192~16 383 bit 7 bit 6-4 6 bit 3-0 0-15 256 3.125
    16 394~32 767 bit 7 bit 6-4 7 bit 3-0 0-15 512 3.125
    下载: 导出CSV

    表  2   不同参数下全波列的压缩时间

    Table  2   Compression time of full waveform under different parameters

    CPU频率/MHz SRAM访问速度/系统时钟 原始波列/ms 幅度×4波列/ms 幅度÷4波列/ms 1 024点波列/ms 4 096点波列/ms
    90 9 7.27 7.83 7.03 3.74 14.50
    120 27 12.70 13.20 12.50 6.48 25.50
    9 5.45 5.87 5.27 2.81 10.90
    5 3.82 4.24 3.67 1.99 7.65
    150 9 4.36 4.70 4.22 2.25 8.73
    下载: 导出CSV
  • [1] 牛德成,苏远大. 基于声波远探测的浅海软地层邻井井眼成像方法[J]. 石油钻探技术,2022,50(6):21–27.

    NIU Decheng, SU Yuanda. Adjacent borehole imaging method based on acoustic remote detection in shallow unconsolidated formations[J]. Petroleum Drilling Techniques, 2022, 50(6): 21–27.

    [2] 高永德,王世越,常波涛,等. 基于随钻前视探测技术的异常高压气层综合识别方法[J]. 天然气工业,2022,42(10):98–106.

    GAO Yongde, WANG Shiyue, CHANG Botao, et al. An integrated identification approach of abnormally high-pressure gas zones based on the look-ahead while drilling technology[J]. Natural Gas Industry, 2022, 42(10): 98–106.

    [3] 杨书博,乔文孝,赵琪琪,等. 随钻前视声波测井钻头前方声场特征研究[J]. 石油钻探技术,2021,49(2):113–120.

    YANG Shubo, QIAO Wenxiao, ZHAO Qiqi, et al. The characteristics of the acoustic field ahead of the bit in “look-ahead” acoustic logging while drilling[J]. Petroleum Drilling Techniques, 2021, 49(2): 113–120.

    [4] 郝小龙,鞠晓东,卢俊强,等. 声波测井存储模块的快速检测系统和补偿方法[J]. 应用声学,2019,38(5):782–787.

    HAO Xiaolong, JU Xiaodong, LU Junqiang, et al. Fast testing system and compensation method for storage module of acoustic logging[J]. Journal of Applied Acoustics, 2019, 38(5): 782–787.

    [5] 卢俊强,鞠晓东,门百永,等. 方位远探测声波测井仪电子系统设计[J]. 测井技术,2022,46(5):530–535.

    LU Junqiang, JU Xiaodong, MEN Baiyong, et al. Design of electronic system of far detection azimuthal acoustic logging tool[J]. Well Logging Technology, 2022, 46(5): 530–535.

    [6]

    SINGH I, BHARANY S. Comparative studies of various techniques for image compression algorithm[J]. Acta Technica Corviniensis–Bulletin of Engineering, 2020, 13: 127–133.

    [7] SAYOOD K. 数据压缩导论[M]. 贾洪峰,译. 4版. 北京:人民邮电出版社,2014:259-278.

    SAYOOD K. Introduction to data compression[M]. JIA Hongfeng, translated. 4th ed. Beijing: Posts & Telecom Press, 2014: 259-278.

    [8]

    ORUKLU E, JAYAKUMAR N, SANIIE J. Ultrasonic signal compression using wavelet packet decomposition and adaptive thre-sholding[C]//2008 IEEE Ultrasonics Symposium. Piscataway, NJ: IEEE Press, 2008: 171-175.

    [9]

    GAWALI D, VARMA N, DIXIT T, et al. Design and implementation of ADPCM based audio compression using VHDL[C]//Proceedings of 2012 International Conference on Information and Network Technology. Alandi: E & TC Department, Maharashtra Academy of Engineering, 2012: 250-254.

    [10]

    FAJARDO A C A, REYES TORRES O M, RAMIREZ SILVA A B. Seismic data compression using 2D lifting-wavelet algorithms[J]. Ingeniería y Ciencia, 2015, 11(21): 221–238.

    [11]

    Schlumberger Limited. Digiscope sli-mhole measurements while drilling[EB/OL]. [2023-12-09]. https://www.slb.com/media/files/drilling/brochure/digiscope-slimhole-mwd-br.ashx.

    [12] 张煜,裘正定,熊轲,等. 基于差分脉码调制的随钻测量数据压缩编码算法[J]. 石油勘探与开发,2010,37(6):748–755.

    ZHANG Yu, QIU Zhengding, XIONG Ke, et al. An algorithm for MWD data compression based on differential pulse code modulation[J]. Petroleum Exploration and Development, 2010, 37(6): 748–755.

    [13] 杨欣仪. 面向测井过程的数据压缩方法研究[D]. 成都:电子科技大学,2023.

    YANG Xinyi. Research on data compression methods for logging processes[D]. Chengdu: University of Electronic Science and Technology, 2023.

    [14] 刘长波,李宝鹏,张所生,等. 一种随钻测井数据实时压缩方法及解压缩方法:CN201610430622.7[P]. 2019-09-06.

    LIU Changbo, LI Baopeng, ZHANG Suosheng, et al. A real-time compression and decompression method for logging while drilling data: CN201610430622.7[P]. 2019-09-06.

    [15] 李谦,彭子威,伍瑞卿,等. 一种自适应量化DPCM的测井数据压缩方法[J]. 国外电子测量技术,2021,40(5):47–51.

    LI Qian, PENG Ziwei, WU Ruiqing, et al. Data compression based on adaptive quantizer DPCM for well logging[J]. Foreign Electronic Measurement Technology, 2021, 40(5): 47–51.

    [16] 梁耀,鞠晓东,李传伟,等. 基于帧间差分的随钻测井数据压缩算法[J]. 数据采集与处理,2019,34(2):297–302.

    LIANG Yao, JU Xiaodong, LI Chuanwei, et al. Data compression algorithm for logging while drilling based on frame-to-frame difference[J]. Journal of Data Acquisition & Processing, 2019, 34(2): 297–302.

    [17] 李传伟,慕德俊,李安宗,等. 随钻声波测井数据实时压缩算法[J]. 西南石油大学学报(自然科学版),2008,30(5):81–84.

    LI Chuanwei, MU Dejun, LI Anzong, et al. A real-time data compression algorithm for acoustic wave logging while drilling[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2008, 30(5): 81–84.

    [18] 邹学玉,冯振,张少华,等. 基于LZW算法的声波测井数据压缩研究[J]. 测井技术,2013,37(3):294–296.

    ZOU Xueyu, FENG Zhen, ZHANG Shaohua, et al. On the sonic logging data compression based on LZW algorithm[J]. Well Logging Technology, 2013, 37(3): 294–296.

    [19] 陈建华. 数据无损压缩传输方法在阵列声波测井仪中的应用[J]. 电子测量技术,2020,43(13):81–84.

    CHEN Jianhua. Application of data lossless compression transporting method in XMAC logging tool[J]. Electronic Measurement Technology, 2020, 43(13): 81–84.

    [20]

    LIU Xianping, JU Xiaodong, QIAO Wenxiao, et al. Test-bench system for a borehole azimuthal acoustic reflection imaging logging tool[J]. Journal of Geophysics and Engineering, 2016, 13(3): 295–303. doi: 10.1088/1742-2132/13/3/295

    [21]

    HAO Xiaolong, JU Xiaodong, LU Junqiang, et al. Intelligent fault-diagnosis system for acoustic logging tool based on multi-technology fusion[J]. Sensors, 2019, 19(15): 3273. doi: 10.3390/s19153273

  • 期刊类型引用(9)

    1. 王彬,李琼玉,吕喜林,梁池,程晓伟,杨永朋. 无水改性乙二醇基速溶压裂液研制及应用. 油气井测试. 2024(05): 34-41 . 百度学术
    2. 凃宏俊,周明,李彤彤. 自修复水凝胶的研究进展及油气田应用. 西南石油大学学报(自然科学版). 2023(01): 71-80 . 百度学术
    3. 李源流,高兴军,侯浩,王延,弓虎军. 低碳烃无水压裂液体系构建及性能评价. 钻采工艺. 2023(01): 126-131 . 百度学术
    4. 匡立新. 新型铝离子无水压裂液的制备及其性能. 石油地质与工程. 2022(01): 81-86 . 百度学术
    5. 魏志毅,张金泽,公证,刘崧达,刘佳音,李家豪,范海明. 双烷基脲稠化烃基压裂液的制备及其流变特性. 中国石油大学学报(自然科学版). 2022(04): 123-129 . 百度学术
    6. 蒋廷学,左罗,黄静. 少水压裂技术及展望. 石油钻探技术. 2020(05): 1-8 . 本站查看
    7. 王满学,何静,王永炜. 国内烃基无水压裂液技术研究与应用进展. 钻井液与完井液. 2018(06): 1-7 . 百度学术
    8. 刘晨,王凯,耿艳宏,王泰超,周文胜,邱凌. 清洁压裂液破胶液驱油体系实验研究. 断块油气田. 2017(01): 96-100 . 百度学术
    9. 王满学,何静,王永炜. 耐高温低碳烃无水压裂液室内研究. 石油钻探技术. 2017(04): 93-96 . 本站查看

    其他类型引用(2)

图(11)  /  表(2)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  39
  • PDF下载量:  43
  • 被引次数: 11
出版历程
  • 收稿日期:  2023-12-13
  • 修回日期:  2024-07-02
  • 网络出版日期:  2024-11-26
  • 刊出日期:  2024-11-24

目录

    /

    返回文章
    返回