Collaborative Relay Transmission Method for Downhole Surface Electromagnetic Waves
-
摘要:
在井下进行表面电磁波通信时,中继器布局不合理会导致信号强度减弱,为此,提出了表面电磁波的协同中继传输方法。首先,结合数值模拟与模拟试验结果,分析了表面电磁波的传播特性;然后,利用电场积分方法,建立了井下表面电磁波中继传输系统的数学模型,分析了不同中继器布局和数量对接收机信号强度的影响。研究结果表明,表面电磁波比传统无线电磁波具有更小的衰减和更高的传输速率,可成为一种高效的井下通信方式;应用表面电磁波协同中继传输技术,信号强度可平均提高5.91 dB。研究结果为增大表面电磁波井下通信的传输距离提供了新的技术途径。
Abstract:When conducting downhole surface electromagnetic wave communication, an unreasonable layout of the relay will lead to the reduction of signal strength. To address this issue, a collaborative relay transmission method for surface electromagnetic wave was proposed. Firstly, the propagation characteristics of surface electromagnetic waves were analyzed by combining numerical simulations and experiments. Then, based on the electric field integral method, a mathematical model for the relay transmission system of downhole surface electromagnetic wave was established. The impact of different relay layouts and quantities on the signal strength of receivers was analyzed. The results show that surface electromagnetic wave have smaller attenuation and higher transmission rates compared to traditional wireless electromagnetic wave, which can be an efficient mode of subsurface communication. Meanwhile, the use of collaborative relay transmission technology of surface electromagnetic wave can increase signal strength by an average of 5.91 dB, providing a new approach to increase the transmission distance of downhole surface electromagnetic wave communication.
-
-
表 1 D1=250 m时的协同中继数据
Table 1 Collaborative relay data when D1=250 m
工作方式 电场强度/(dBV·m−1) 相位/(°) A单独作用 38.3481 − 129.9070 B单独作用 44.3001 62.7568 AB非协同作用 38.6218 74.8901 AB协同作用 48.1589 − 129.8920 表 2 D1=150 m时的协同中继数据
Table 2 Collaborative relay data when D1=150 m
工作方式 电场强度/(dBV·m−1) 相位/(°) A单独作用 38.3481 − 129.9070 B单独作用 44.2194 173.2582 AB非协同作用 45.8870 − 164.1281 AB协同作用 47.7820 − 129.9090 表 3 D1=100 m时的协同中继数据
Table 3 Collaborative relay data when D1=100 m
工作方式 电场强度/(dBV·m−1) 相位/(°) A单独作用 38.3481 − 129.9070 B单独作用 47.1960 45.4776 AB非协同作用 43.3552 42.8095 AB协同作用 49.8665 − 129.9050 表 4 多中继情况协同中继数据
Table 4 Collaborative relay data in multi-relay scenarios
工作方式 电场强度/(dBV·m−1) 相位/(°) A单独作用 38.348 1 −129.907 0 B单独作用 39.902 8 −80.535 9 C单独作用 44.219 4 62.750 8 ABC非协同 32.322 9 −21.366 7 ABC协同 50.767 0 −129.899 0 -
[1] 王延文,叶海超. 随钻测控技术现状及发展趋势[J]. 石油钻探技术,2024,52(1):122–129. doi: 10.11911/syztjs.2024017 WANG Yanwen, YE Haichao. Current status and development trend of measurement & control while drilling technology[J]. Petroleum Drilling Techniques, 2024, 52(1): 122–129. doi: 10.11911/syztjs.2024017
[2] 李皋,陈泽,孟英峰,等. 气体钻井MMWD随钻测量方法研究[J]. 石油钻探技术,2018,46(5):52–56. LI Gao, CHEN Ze, MENG Yingfeng, et al. Research on measurement methods of MMWD during gas drilling[J]. Petroleum Drilling Techniques, 2018, 46(5): 52–56.
[3] 李志刚,管志川,王以法. 近钻头短距离声波通信[J]. 中国石油大学学报(自然科学版),2010,34(2):62–66. LI Zhigang, GUAN Zhichuan, WANG Yifa. Acoustic communication near-bit short distance[J]. Journal of China University of Petroleum (Edition of Natural Science), 2010, 34(2): 62–66.
[4] 刘修善,侯绪田,涂玉林,等. 电磁随钻测量技术现状及发展趋势[J]. 石油钻探技术,2006,34(5):4–9. LIU Xiushan, HOU Xutian, TU Yulin, et al. Developments of electromagnetic measurement while drilling[J]. Petroleum Drilling Techniques, 2006, 34(5): 4–9.
[5] SMOLYANINOV I, BALZANO Q, YOUNG D. Development of broadband underwater radio communication for application in unmanned underwater vehicles[J]. Journal of Marine Science and Engineering, 2020, 8(5): 370. doi: 10.3390/jmse8050370
[6] MILLER R R II, WORSTELL H R. Using surface wave propagation to communicate an information-bearing signal through a barrier: US 8269583 B2[P]. 2012-09-18.
[7] TARIQ F, KHANDAKER M R A, WONG K K, et al. A speculative study on 6G[J]. IEEE Wireless Communications, 2020, 27(4): 118–125. doi: 10.1109/MWC.001.1900488
[8] SMOLYANINOV I I, BALZANO Q, DAVIS C C, et al. Surface wave based underwater radio communication[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(12): 2503–2507. doi: 10.1109/LAWP.2018.2880008
[9] AMJADI S M, SARABANDI K. A compact single conductor transmission line launcher for telemetry in borehole drilling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2674–2681. doi: 10.1109/TGRS.2017.2650907
[10] ROBERSON M W, RODNEY P F, GOODWIN S. Downhole wireless communications using surface waves: US 20180003040 A1[P]. 2018-01-04.
[11] GUZMAN J. Electromagnetic surface wave communication in a pipe: US 20200277853 A1[P]. 2020-09-03.
[12] 庞东晓,韩雄,潘登,等. 中继传输技术在井下无线地面直读中的应用[J]. 油气井测试,2016,25(6):43–45. PANG Dongxiao, HAN Xiong, PAN Deng, et al. Application of relay transmission technology in surface wireless read-out[J]. Well Testing, 2016, 25(6): 43–45.
[13] 田腾. 随钻电磁波接力传输模拟电路系统研究[D]. 成都:电子科技大学,2019. TIAN Teng. Research of analog circuit system on electromagnetic wave relay transmission while drilling[D]. Chengdu: University of Electronic Science and Technology of China, 2019.
[14] 陈晓晖,高炳堂,宋朝晖. 超高阻盐膏层随钻电磁中继传输特性研究[J]. 石油钻探技术,2018,46(3):114–119. CHEN Xiaohui, GAO Bingtang, SONG Zhaohui. Research on downhole electromagnetic repeater transmission characteristics in ultra high resistivity gypsum-salt layers[J]. Petroleum Drilling Techniques, 2018, 46(3): 114–119.
[15] WANG Wanjiang, LI Weiqin, LIU Changmin, et al. Theoretical study of in-phase forwarding in enhancing underground wireless electromagnetic relay transmission[C]//Proceedings of the 2021 International Petroleum and Petrochemical Technology Conference. Singapore: Springer, 2022: 623-628.
[16] AMJADI S M. Electromagnetic concepts to enhance communication in harsh RF environments[D]. Ann Arbor: University of Michigan, 2019.
[17] ROBERSON M W, GOODWIN S. Magnetic surface wave effect to probe fluid properties in a wellbore: US 10534106 B2[P]. 2020-01-14.
[18] 黄志洵,姜荣. 表面电磁波与表面等离子波[J]. 中国传媒大学学报(自然科学版),2011,18(2):1–13. doi: 10.3969/j.issn.1673-4793.2011.02.001 HUANG Zhixun, JIANG Rong. Surface electro-magnetic waves and surface plasma waves[J]. Journal of Communication University of China(Science and Technology), 2011, 18(2): 1–13. doi: 10.3969/j.issn.1673-4793.2011.02.001
[19] 曹萍. 电偶极子在三层介质中激励电磁场的瞬态解[D]. 杭州:浙江大学,2015. CAO Ping. Transient field of electric dipole in the presence of three-layered region[D]. Hangzhou: Zhejiang University, 2015.
-
期刊类型引用(26)
1. 睢圣. 永川南区页岩气水平井优快钻井技术. 石油和化工设备. 2023(07): 109-113 . 百度学术
2. 石芳,熊青山,李微,王柯,刘恒. 涪陵页岩气田井场规划技术研究. 能源与环保. 2022(06): 104-113 . 百度学术
3. 睢圣,沈建文,李昱垚,李衡. 威荣深层页岩气水平井钻井提速关键技术. 石油和化工设备. 2022(09): 106-109 . 百度学术
4. 范红康,刘劲歌,臧艳彬,周贤海,艾军,宋争. 涪陵页岩气田焦石坝区块调整井钻井技术. 石油钻探技术. 2021(03): 48-54 . 本站查看
5. 田福春,刘学伟,张胜传,张高峰,邵力飞,陈紫薇. 大港油田陆相页岩油滑溜水连续加砂压裂技术. 石油钻探技术. 2021(04): 118-124 . 本站查看
6. 张辉. 大牛地气田丛式小井眼集约化钻井技术. 天然气技术与经济. 2020(02): 28-33 . 百度学术
7. 张宏桥,游娜,李妍僖,唐凯,王前敏,牟新明. 射孔快速连接井口装置技术现状及分析. 石油矿场机械. 2020(06): 16-20 . 百度学术
8. 吴林强,张涛,徐晶晶,郭洪周,蒋成竹,赵一璇. “涪陵样板”对加快推进长江经济带页岩气勘查开发新格局的启示. 国际石油经济. 2019(02): 36-42 . 百度学术
9. 金成志,何剑,林庆祥,梅俭,段彦清. 松辽盆地北部芳198-133区块致密油地质工程一体化压裂实践. 中国石油勘探. 2019(02): 218-225 . 百度学术
10. 魏学成. 页岩气压裂井场火灾智能预警及远控消防系统. 今日消防. 2019(05): 53-55 . 百度学术
11. 赵全民,张金成,刘劲歌. 中国页岩气革命现状与发展建议. 探矿工程(岩土钻掘工程). 2019(08): 1-9 . 百度学术
12. 董成林,涂玉林,殷子横,张金成,周号博. 涪陵页岩气田钻井提速集成技术应用研究. 西部探矿工程. 2019(12): 47-50 . 百度学术
13. 潘军,刘卫东,张金成. 涪陵页岩气田钻井工程技术进展与发展建议. 石油钻探技术. 2018(04): 9-15 . 本站查看
14. 刘尧文. 涪陵页岩气田绿色开发关键技术. 石油钻探技术. 2018(05): 8-13 . 本站查看
15. 李亚飞. 焦页81平台“1+N”钻井模式压力异常处理技术. 化工管理. 2017(11): 215 . 百度学术
16. 梅绪东,金吉中,王朝强,何勇,王丹,张春. 涪陵页岩气田绿色开发的实践与探索. 西南石油大学学报(社会科学版). 2017(06): 9-14 . 百度学术
17. 柴光明. 工厂化技术在致密油水平井钻井中的应用. 石化技术. 2017(07): 286 . 百度学术
18. 彭彩珍,任玉洁. 页岩气开发关键新型技术应用现状及挑战. 当代石油石化. 2017(01): 24-27+33 . 百度学术
19. 李彬,付建红,秦富兵,唐一元. 威远区块页岩气“井工厂”钻井技术. 石油钻探技术. 2017(05): 13-18 . 本站查看
20. 郭盛堂. 工厂化水平井钻井关键技术. 西部探矿工程. 2017(05): 90-92 . 百度学术
21. 谢洪斌,姚光华,罗真富,杨雪,谭德军. GIS与RS技术在页岩气钻场选址中的应用——以重庆酉阳东页岩气勘查区块为例. 遥感信息. 2017(04): 152-156 . 百度学术
22. 代兆国. 焦石坝“丛式井”压裂设备布局研究. 江汉石油职工大学学报. 2016(06): 28-31 . 百度学术
23. 张金成,艾军,臧艳彬,杨海平,陈小锋. 涪陵页岩气田“井工厂”技术. 石油钻探技术. 2016(03): 9-15 . 本站查看
24. 臧艳彬,张金成,赵明琨,宋争,罗锐. 涪陵页岩气田“井工厂”技术经济性评价. 石油钻探技术. 2016(06): 30-35 . 本站查看
25. 刘超. 涪陵页岩气田“绿色”钻井关键技术研究与实践. 探矿工程(岩土钻掘工程). 2016(07): 9-13 . 百度学术
26. 沈建中,龙志平. 延川南煤层气低成本高效钻井技术探索与实践. 石油钻探技术. 2015(05): 69-74 . 本站查看
其他类型引用(15)