生物酶/过硫酸铵对胍胶压裂液破胶作用机制研究

熊俊杰

熊俊杰. 生物酶/过硫酸铵对胍胶压裂液破胶作用机制研究[J]. 石油钻探技术,2024,52(6):126−130. DOI: 10.11911/syztjs.2024071
引用本文: 熊俊杰. 生物酶/过硫酸铵对胍胶压裂液破胶作用机制研究[J]. 石油钻探技术,2024,52(6):126−130. DOI: 10.11911/syztjs.2024071
XIONG Junjie. Gel breaking mechanism of guar gum fracturing fluid by biological enzyme and ammonium persulfate [J]. Petroleum Drilling Techniques, 2024, 52(6):126−130. DOI: 10.11911/syztjs.2024071
Citation: XIONG Junjie. Gel breaking mechanism of guar gum fracturing fluid by biological enzyme and ammonium persulfate [J]. Petroleum Drilling Techniques, 2024, 52(6):126−130. DOI: 10.11911/syztjs.2024071

生物酶/过硫酸铵对胍胶压裂液破胶作用机制研究

基金项目: 中海油能源发展股份有限公司项目“耐温耐盐压裂液体系研发与应用”(编号:HFZXKT−GJ2022−03−06)资助。
详细信息
    作者简介:

    熊俊杰(1985—),男,江西上高人,2008年毕业于海南大学化学工程与工艺专业,2011年获西南石油大学应用化学专业硕士学位,2023年获长江大学应用化学专业博士学位,高级工程师,主要从事压裂酸化技术研究工作。E-mail: xiongjj@cnooc.com.cn

  • 中图分类号: TE357.1+2

Gel Breaking Mechanism of Guar Gum Fracturing Fluid by Biological Enzyme and Ammonium Persulfate

  • 摘要:

    为有效降低胍胶压裂液破胶后产生的残渣对地层造成的伤害,通过分析不同破胶方式下胍胶压裂液破胶液分子的物理化学性质,探究了生物酶及过硫酸铵/生物酶复合破胶剂对胍胶压裂液的破胶作用机理。研究发现,与过硫酸铵破胶剂相比,生物酶及过硫酸铵/生物酶复合破胶剂能更有效地降低破胶液的相对分子质量和分子尺寸;胍胶压裂液破胶液中的主要降解产物是二糖—五糖。胍胶压裂液破胶液残渣分析表明,残渣分子中甘露糖与半乳糖的含量比只有0.38,导致其水溶性差,这也是其存在残渣的主要原因。同时,模拟试验结果表明,注酸可以有效降解胍胶压裂液破胶液残渣含量,提高支撑剂导流能力。研究结果为破胶剂优选和降低胍胶压裂液破胶液残渣造成的伤害提供了理论依据。

    Abstract:

    To effectively alleviate the damage of residues produced by broken guar gum fracturing fluid to the formation, the gel breaking mechanism of biological enzyme and ammonium persulfate/biological enzyme composite gel breakers on the guar gum fracturing fluid was investigated by analyzing the molecular physical and chemical properties of the gel breaking solution of guar gum fracturing fluid under different gel breaking methods. The results show that compared with ammonium persulfate gel breakers, biological enzyme and ammonium persulfate/biological enzyme composite gel breakers can effectively reduce the relative molecular weight and molecular size of gel breaking solution. The degradation products in the gel breaking solution are mainly disaccharide to pentasaccharide. The analysis of gel breaking solution residues shows that the content ratio of mannose to galactose in residue molecules is only 0.38, which is the main reason for its poor water solubility and the existence of residues in the gel breaking solution. In addition, through the simulation test, it is found that acid injection can effectively degrade the gel breaking solution residues of guar gum fracturing fluid and improve the proppant conductivity. The results can provide a theoretical basis for selecting gel breakers and reducing damage caused by gel breaking solution residues.

  • 图  1   残渣降解不同时间后半乳糖和甘露糖的含量

    Figure  1.   Content of galactose and mannose under different degradation time

    图  2   支撑剂导流能力伤害测试结果

    Figure  2.   Results of proppant conductivity damage test

    表  1   不同破胶剂对破胶液黏度的影响

    Table  1   Effect of different gel breakers on viscosity of gel breaking solutions

    破胶剂及加量 破胶液黏度/(mPa·s)
    过硫酸铵加量,% 生物酶加量/(mg·L−1) 1 h 2 h 3 h 4 h
    0.050 61.32 31.67 1.97 1.29
    10 40.43 22.74 1.82 1.16
    0.025 5 42.57 24.81 1.99 1.21
    0.050 10 20.64 3.53 1.82 1.12
    下载: 导出CSV

    表  2   不同破胶剂及不同破胶时间下破胶液的相对分子质量

    Table  2   Relative molecular weight of different gel breakers and gel breaking solutions under different gel breaking time

    破胶剂及加量相对分子质量相对分子质量
    降低率,%
    4 h12 h
    0.05%过硫酸铵515 600398 20022.77
    10 mg/L生物酶139 70050 30064.00
    0.025%过硫酸铵+5 mg/L生物酶329 10063 00080.86
    0.050%过硫酸铵+10 mg/L生物酶133 40029 70077.74
    下载: 导出CSV

    表  3   不同破胶剂及不同破胶时间下破胶液的分子尺寸

    Table  3   Molecular size of different gel breakers and gel breaking solutions under different gel breaking time

    破胶剂及加量 粒径中值/μm 粒径中值
    降低率,%
    4 h 12 h
    0.050%过硫酸铵 132 123 6.81
    10 mg/L生物酶 57 43 24.56
    0.025%过硫酸铵+5 mg/L生物酶 66 46 30.30
    0.050%过硫酸铵+10 mg/L生物酶 41 35 14.63
    下载: 导出CSV

    表  4   不同破胶剂下各低聚糖的含量

    Table  4   Content of oligosaccharides under different gel breakers

    破胶剂 单糖含量,% 二糖—五糖含量,% 六糖—十糖含量,%
    4 h 12 h 4 h 12 h 4 h 12 h
    1 0.2 0.8 79.1 80.9 20.7 18.3
    2 0.3 1.0 77.3 78.6 22.4 20.4
    3 0.5 1.3 83.7 85.1 15.8 13.6
     注:破胶剂1为10 mg/L,破胶剂2为0.025%过硫酸铵+5 mg/L生物酶,破胶剂3为0.050%过硫酸铵+10 mg/L生物酶。
    下载: 导出CSV

    表  5   支撑剂导流能力恢复测试结果

    Table  5   Results of proppant conductivity recovery test

    破胶剂导流能力/(mD·m)导流能力
    恢复率,%
    伤害前解除伤害后
    0.050%过硫酸铵23621490.7
    10 mg/L生物酶25923992.3
    0.025%过硫酸铵+5 mg/L生物酶24623294.3
    下载: 导出CSV
  • [1] 陈大钧,陈馥. 油气田应用化学[M]. 北京:石油工业出版社,2006:99-100.

    CHEN Dajun, CHEN Fu. Applied chemistry of oil and gas fie-lds[M]. Beijing: Petroleum Industry Press, 2006: 99-100.

    [2] 李刚,铁忠银. HZY-1、HZY-2低温破胶压裂液的研究及应用[J]. 石油钻探技术,1998,26(1):46–48.

    LI Gang, TIE Zhongyin. Development and application of HZY-1, HZY-2 low temperature fracturing fluid for gel breaking[J]. Petroleum Drilling Techniques, 1998, 26(1): 46–48.

    [3] 余翠沛,张滨海,李紫晗,等. 临兴区块致密气储层压裂损害影响因素[J]. 特种油气藏,2022,29(1):141–146. doi: 10.3969/j.issn.1006-6535.2022.01.021

    YU Cuipei, ZHANG Binhai, LI Zihan, et al. On factors influencing fracture damage in tight gas reservoirs, Linxing Block[J]. Special Oil & Gas Reservoirs, 2022, 29(1): 141–146. doi: 10.3969/j.issn.1006-6535.2022.01.021

    [4] 刘立宏,王娟娟,高春华. 多元改性速溶胍胶压裂液研究与应用[J]. 石油钻探技术,2015,43(3):116–119.

    LIU Lihong, WANG Juanjuan, GAO Chunhua. Research and application of a multicomponent modified instant guar fracturing fluid[J]. Petroleum Drilling Techniques, 2015, 43(3): 116–119.

    [5]

    WEAVER J, SCHMELZL E, JAMIESON M, et al. New fluid technology allows fracturing without internal breakers[R]. SPE 75690, 2002.

    [6] 王红科,刘音,何武,等. 高温水配制压裂液技术研究与现场应用[J]. 钻井液与完井液,2020,37(3):384–388. doi: 10.3969/j.issn.1001-5620.2020.03.020

    WANG Hongke, LIU Yin, HE Wu, et al. Preparation of fracturing fluids with hot water[J]. Drilling Fluid & Completion Fluid, 2020, 37(3): 384–388. doi: 10.3969/j.issn.1001-5620.2020.03.020

    [7] 刘平礼,张璐,邢希金,等. 瓜胶压裂液对储层的伤害特性[J]. 油田化学,2014,31(3):334–338.

    LIU Pingli, ZHANG Lu, XING Xijin, et al. Characteristics of formation damage by Guar-Gum fracturing fluids[J]. Oilfield Chemistry, 2014, 31(3): 334–338.

    [8] 乔东宇,郑义平,冉照辉,等. 低伤害压裂液在苏里格气田的应用[J]. 钻井液与完井液,2012,29(2):71–72. doi: 10.3969/j.issn.1001-5620.2012.02.023

    QIAO Dongyu, ZHENG Yiping, RAN Zhaohui, et al. Application of low-damage fracturing fluid system in Block Su77 of Sulige Gas Field[J]. Drilling Fluid & Completion Fluid, 2012, 29(2): 71–72. doi: 10.3969/j.issn.1001-5620.2012.02.023

    [9] 乔红军,马春晓,高志亮,等. 适用于低渗透储层的有机硼胍胶压裂液体系的制备与性能评价[J]. 油田化学,2020,37(2):204–207.

    QIAO Hongjun, MA Chunxiao, GAO Zhiliang, et al. Preparation and performance evaluation of organic boron guanidine gum fracturing fluid for the low permeability reservoir[J]. Oilfield Chemistry, 2020, 37(2): 204–207.

    [10] 刘合,肖丹凤. 新型低损害植物胶压裂液及其在低渗透储层中的应用[J]. 石油学报,2008,29(6):880–884. doi: 10.3321/j.issn:0253-2697.2008.06.017

    LIU He, XIAO Danfeng. A novel low-damage vegetable gum-based fracturing fluid and its application in low-permeability reservoirs[J]. Acta Petrolei Sinica, 2008, 29(6): 880–884. doi: 10.3321/j.issn:0253-2697.2008.06.017

    [11] 管保山,丛连铸,丁里,等. 延迟破胶及强制裂缝闭合技术的研究及应用[J]. 钻井液与完井液,2006,23(4):62–64. doi: 10.3969/j.issn.1001-5620.2006.04.019

    GUAN Baoshan, CONG Lianzhu, DING Li, et al. Research and application of delayed break and forced fracture closure technology[J]. Drilling Fluid & Completion Fluid, 2006, 23(4): 62–64. doi: 10.3969/j.issn.1001-5620.2006.04.019

    [12]

    WEAVER J, PARKER M, SLABAUGH B, et al. Application of new viscoelastic fluid technology results in enhanced fracture productivity[R]. SPE 71662, 2001.

    [13]

    VONEIFF G W, ROBINSON B M, HOLDITCH S A. The effects of unbroken fracture fluid on gas well performance[R]. SPE 26664, 1993.

    [14] 李建山,陆红军,王平,等. 生物酶破胶剂在气井压裂中的研究与应用[J]. 钻井液与完井液,2012,29(6):71–73. doi: 10.3969/j.issn.1001-5620.2012.06.022

    LI Jianshan, LU Hongjun, WANG Ping, et al. Research and application on enzyme breaker of fracturing in gas well[J]. Drilling Fluid & Completion Fluid, 2012, 29(6): 71–73. doi: 10.3969/j.issn.1001-5620.2012.06.022

    [15] 徐晓峰,郭旭跃,胡佩. 新型压裂液低温破胶体系的研制[J]. 特种油气藏,2004,11(6):89–91. doi: 10.3969/j.issn.1006-6535.2004.06.029

    XU Xiaofeng, GUO Xuyue, HU Pei. Development of a new low temperature breaking system of fracture fluid[J]. Special Oil & Gas Reservoirs, 2004, 11(6): 89–91. doi: 10.3969/j.issn.1006-6535.2004.06.029

    [16]

    MUDGIL D, BARAK S, KHATKAR B S. Effect of enzymatic depolymerization on physicochemical and rheological properties of guar gum[J]. Carbohydrate Polymers, 2012, 90(1): 224–228. doi: 10.1016/j.carbpol.2012.04.070

    [17]

    LI Dandan, YANG Na, ZHANG Yao, et al. Structural and physicochemical changes in guar gum by alcohol-acid treatment[J]. Carbohydrate Polymers, 2018, 179: 2–9. doi: 10.1016/j.carbpol.2017.09.057

    [18] SY/T 7627—2021 水基压裂液技术要求[S].

    SY/T 7627—2021 Technical requirements of water-based fracturing fuid[S].

    [19] 周建平,杨战伟,徐敏杰,等. 工业氯化钙加重胍胶压裂液体系研究与现场试验[J]. 石油钻探技术,2021,49(2):96–101. doi: 10.11911/syztjs.2021014

    ZHOU Jianping, YANG Zhanwei, XU Minjie, et al. Research and field tests of weighted fracturing fluids with industrial calcium chloride and guar gum[J]. Petroleum Drilling Techniques, 2021, 49(2): 96–101. doi: 10.11911/syztjs.2021014

    [20]

    CHENG Yu, BROWN K M, PRUD’HOMME R K. Characterization and intermolecular interactions of hydroxypropyl guar solutions[J]. Biomacromolecules, 2002, 3(3): 456–461. doi: 10.1021/bm0156227

    [21]

    BURKE M D, PARK J O, SRINIVASARAO M, et al. Diffusion of macromolecules in polymer solutions and gels: a laser scanning confocal microscopy study[J]. Macromolecules, 2000, 33(20): 7500–7507. doi: 10.1021/ma000786l

  • 期刊类型引用(10)

    1. 曹辉,李宝军,赵向阳. 厄瓜多尔Tambococha油田水平井钻井液技术. 石油钻探技术. 2022(01): 54-59 . 本站查看
    2. 郑明雄,李保珠. 高压扰动下高分解凝灰岩的两种防塌剂性能研究. 工程勘察. 2021(07): 1-5 . 百度学术
    3. 杨建民,刘伟,熊小伟,王丹,王希,尹后凤,冯斌. 页岩气井环保型强抑制水基钻井液体系研究与应用. 钻采工艺. 2020(02): 107-110+7 . 百度学术
    4. 祝学飞,孙俊,徐思旭,刘皓枫,査凌飞. HT2井三开水基钻井液CO_3~(2-)和HCO_3~-污染处理工艺. 钻井液与完井液. 2019(01): 36-40 . 百度学术
    5. 张永青,胡景东,许朋琛,郑雄,曹娇,王永强. HL-FFQH环保型水基钻井液体系的构建及应用. 钻井液与完井液. 2019(04): 437-441+448 . 百度学术
    6. 凡帆,刘伟,贾俊. 长北区块无土相防水锁低伤害钻井液技术. 石油钻探技术. 2019(05): 34-39 . 本站查看
    7. 景丰,姚志奇. 延长组页岩气水平井水基钻井液体系研制与应用. 大庆石油地质与开发. 2019(06): 155-161 . 百度学术
    8. 段志锋,吴学升,董宏伟,黎金明,张建卿. 苏里格气田钻井清洁化生产配套技术. 石油钻采工艺. 2019(05): 586-591 . 百度学术
    9. 姚倩,许明标,由福昌. 硅酸盐钻井液泥包形成的趋势研究. 钻井液与完井液. 2019(06): 700-705 . 百度学术
    10. 陈安明,龙志平,周玉仓,王彦祺,彭兴,曹华庆. 四川盆地外缘常压页岩气水平井低成本钻井技术探讨. 石油钻探技术. 2018(06): 9-14 . 本站查看

    其他类型引用(3)

图(2)  /  表(5)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  29
  • PDF下载量:  68
  • 被引次数: 13
出版历程
  • 收稿日期:  2022-12-09
  • 修回日期:  2024-07-04
  • 网络出版日期:  2024-07-17
  • 刊出日期:  2024-11-24

目录

    /

    返回文章
    返回