Mechanism and Law of CO2 Pressure Flooding in Enhancing Oil Recovery in Low-Permeability Heavy Oil Reservoirs
-
摘要:
为明确低渗透稠油油藏CO2压驱开采机理及开发效果,利用相态模拟技术分析了CO2对稠油的作用机理。基于有限元离散法,建立了裂缝扩展渗流场−应力场耦合模型,分析了注入压力对裂缝扩展行为的影响。基于裂缝生成模拟结果,建立了考虑CO2复合压驱后形成复杂裂缝的数值模型,进行了油藏压后生产模拟,形成了基于油藏动态参数的稠油油藏CO2压驱数值模拟方法,分析了CO2压驱过程中的裂缝扩展规律,优化了CO2压驱工艺参数。模拟结果表明,CO2压驱的主要作用机理包括降低原油黏度、膨胀原油、增强原油流动性、在注入井附近造缝提高CO2注入能力及增加地层压力。CO2具有较好的增能效果,CO2运移受储层非均质性影响严重,气体超覆作用导致注入的CO2易在储层上部位聚集,上部位原油降黏效果更为显著。通过优化稠油CO2压驱工艺参数,建议压驱注入压力控制在40~50 MPa。该研究结果对稠油油藏CO2压驱设计及现场应用具有一定的指导作用。
Abstract:In order to clarify the production mechanism and development effect of CO2 pressure flooding in low-permeability heavy oil reservoirs, the influencing mechanisms of CO2 on heavy oil were analyzed by using phase simulation technology. Based on the finite element discrete method, the coupling model of the seepage field and stress field of fracture propagation was established, and the influence of injection pressure on fracture propagation behavior was analyzed. According to the simulation results of fracture generation, a numerical model considering the formation of complex fractures after CO2 combined pressure flooding was established, and the reservoir production after pressure flooding was simulated. A numerical simulation method of CO2 pressure flooding for heavy oil reservoirs was developed based on dynamic reservoir parameters. The law of fracture propagation during CO2 pressure flooding was analyzed, and the technological parameters of CO2 pressure flooding were optimized. The simulation results show that the main influencing mechanisms of CO2 pressure flooding include reducing crude oil viscosity, expanding crude oil, enhancing crude oil fluidity, fracturing near injection wells to improve CO2 injection capacity, and increasing formation pressure. CO2 has a good energy enhancement effect, and CO2 migration is greatly affected by the heterogeneity of the reservoir. Gas overlap leads to the accumulation of injected CO2 in the upper part of the reservoir, and the crude oil viscosity reduction effect in the upper part of the reservoir is more significant. By optimizing the technological parameters of CO2 pressure flooding for heavy oil, it is suggested that the injection pressure of pressure flooding should be controlled at 40–50 MPa. The research results can guide the design and field application of CO2 pressure flooding in heavy oil reservoirs.
-
-
表 1 参数拟合结果
Table 1 Parameter fitting results
拟合参数 饱和压力/
MPa地面脱气油密度/
(kg·L−1)地层油黏度/
(mPa·s)试验值 4.30 0.962 8 1 099 拟合值 4.23 0.946 7 1 099 误差,% 1.63 1.70 0 -
[1] 李小龙. 低渗稠油储层径向井辅助压裂裂缝扩展规律研究[D]. 青岛:中国石油大学(华东),2018. LI Xiaolong. Study on law of fracture propagation of radial well fracturing in low permeability heavy oil reservoir[D]. Qingdao: China University of Petroleum(East China), 2018.
[2] 刘文章. 稠油注蒸汽热采工程[M]. 北京:石油工业出版社,1997:1-8. LIU Wenzhang. Heavy oil thermal recovery engineering by steam injection[M]. Beijing: Petroleum Industry Press, 1997: 1-8.
[3] 冯海顺,张绍东,王涛,等. 低效稠油CO2复合吞吐参数优化[J]. 科学技术与工程,2022,22(15):6060–6065. FENG Haishun, ZHANG Shaodong, WANG Tao, et al. Optimization of CO2 compound huff and puff parameters for low-efficiency heavy oil[J]. Science Technology and Engineering, 2022, 22(15): 6060–6065.
[4] 魏鸿坤,王健,许天寒,等. CO2对稠油油藏的物性调控及辅助蒸汽驱提高采收率[J]. 新疆石油地质,2024,45(2):221–227. WEI Hongkun, WANG Jian, XU Tianhan, et al. Regulation of CO2 on physical properties of heavy oil reservoir and EOR of CO2-assisted steam flooding[J]. Xinjiang Petroleum Geology, 2024, 45(2): 221–227.
[5] 李阳,黄文欢,金勇,等. 双碳愿景下中国石化不同油藏类型CO2驱提高采收率技术发展与应用[J]. 油气藏评价与开发,2021,11(6):793–804. LI Yang, HUANG Wenhuan, JIN Yong, et al. Different reservoir types of CO2 flooding in Sinopec EOR technology development and application under “dual carbon” vision[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 793–804.
[6] 张丽雅,宋兆杰,马平华,等. 稠油油藏注超临界二氧化碳驱油影响因素分析[J]. 地质与勘探,2017,53(4):801–806. ZHANG Liya, SONG Zhaojie, MA Pinghua, et al. Analysis on influential factors of supercritical carbon dioxide flooding in heavy-oil reservoirs[J]. Geology and Exploration, 2017, 53(4): 801–806.
[7] 陈举民,李进,曹红燕,等. 浅薄稠油油藏水平井CO2吞吐机理及影响因素[J]. 断块油气田,2018,25(4):515–520. CHEN Jumin, LI Jin, CAO Hongyan, et al. Mechanism and influence factors for CO2 huff and puff of horizontal flooding in shallow and thin heavy oil reservoir[J]. Fault-Block Oil & Gas Field, 2018, 25(4): 515–520.
[8] 石彦,谢俊辉,郭小婷,等. 新疆油田中深层稠油CO2驱/吞吐实验研究[J]. 油气藏评价与开发,2024,14(1):76–82. SHI Yan, XIE Junhui, GUO Xiaoting, et al. Experimental study on CO2 flooding/huff and puff of medium-deep heavy oil in Xinjiang Oilfield[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 76–82.
[9] 张立,张卫东,沈之芹,等. 二氧化碳提高稠油采收率技术进展[J]. 化学世界,2020,61(11):727–732. ZHANG Li, ZHANG Weidong, SHEN Zhiqin, et al. Advances in enhanced heavy oil recovery technology with CO2[J]. Chemical World, 2020, 61(11): 727–732.
[10] 刘经纬,黄亮,仲学哲,等. 超临界CO2对稠油物理化学性质影响实验:以G24-P21井为例[J]. 石油地质与工程,2020,34(4):84–89. LIU Jingwei, HUANG Liang, ZHONG Xuezhe, et al. Experimental study on the effect of supercritical CO2 on the physicochemical properties of heavy oil: by taking G24-P21 Well as an example[J]. Petroleum Geology and Engineering, 2020, 34(4): 84–89.
[11] SUN Xiaofei, CAI Jiaming, LI Xiaoyu, et al. Experimental investigation of a novel method for heavy oil recovery using supercritical multithermal fluid flooding[J]. Applied Thermal Engineering, 2021, 185: 116330. doi: 10.1016/j.applthermaleng.2020.116330
[12] 钱卫明,林刚,王波,等. 底水驱稠油油藏水平井多轮次CO2吞吐配套技术及参数评价:以苏北油田HZ区块为例[J]. 石油地质与工程,2020,34(1):107–111. QIAN Weiming, LIN Gang, WANG Bo, et al. Multi-cycle CO2 huff and puff matching technology and parameter evaluation for horizontal wells in heavy oil reservoirs with bottom water drive: by taking HZ Block of Subei Oilfield as an example[J]. Petroleum Geology and Engineering, 2020, 34(1): 107–111.
[13] 武玺,张祝新,章晓庆,等. 大港油田开发中后期稠油油藏CO2吞吐参数优化及实践[J]. 油气藏评价与开发,2020,10(3):80–85. WU Xi, ZHANG Zhuxin, ZHANG Xiaoqing, et al. Optimization and practice of CO2 huff and puff parameters of heavy oil reservoir in the middle and late development stage in Dagang Oilfield[J]. Petroleum Reservoir Evaluation and Development, 2020, 10(3): 80–85.
[14] 曹力元. 苏北油田CO2驱油同心双管分层注气技术[J]. 石油钻探技术,2022,50(4):109–113. doi: 10.11911/syztjs.2022087 CAO Liyuan. A stratified gas injection technique with concentric double pipe for CO2 flooding in Subei Oilfield [J]. Petroleum Drilling Techniques, 2022, 50(4): 109–113. doi: 10.11911/syztjs.2022087
[15] 李凤霞, 王海波, 周彤, 等. 页岩油储层裂缝对CO2吞吐效果的影响及孔隙动用特征[J]. 石油钻探技术,2022,50(2):38–44. doi: 10.11911/syztjs.2022006 LI Fengxia, WANG Haibo, ZHOU Tong, et al. The influence of fractures in shale oil reservoirs on CO2 huff and puff and its pore production characteristics[J]. Petroleum Drilling Techniques, 2022, 50(2): 38–44. doi: 10.11911/syztjs.2022006
[16] 孙而杰,彭旭,朱连忠,等. 注CO2提高普通稠油油藏驱油效率物理模拟试验研究[J]. 实验室科学,2010,13(3):90–93. SUN Erjie, PENG Xu, ZHU Lianzhong, et al. Study on the physical simulation test of injecting CO2 to improve the flooding efficiency of general heavy oil[J]. Laboratory Science, 2010, 13(3): 90–93.
[17] 孙焕泉,王海涛,吴光焕,等. 稠油油藏注CO2提高采收率影响因素研究[J]. 石油实验地质,2020,42(6):1009–1013. SUN Huanquan, WANG Haitao, WU Guanghuan, et al. CO2 EOR factors in heavy oil reservoirs[J]. Petroleum Geology and Experiment, 2020, 42(6): 1009–1013.
[18] 王俊衡,王健,周志伟,等. 稠油油藏CO2辅助蒸汽驱油机理实验研究[J]. 油气藏评价与开发,2021,11(6):852–857. WANG Junheng, WANG Jian, ZHOU Zhiwei, et al. Experimental study on mechanism of CO2 assisted steam flooding in heavy oil reservoir[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 852–857.
[19] PARRACELLO P V, BARTOSEK M, de SIMONI M, et al. Experimental evaluation of CO2 injection in a heavy oil reservoir[R]. IPTC 14869, 2011.
[20] ZHENG Sixu, LI Huazhou, YANG Daoyong. Pressure maintenance and improving oil recovery with immiscible CO2 injection in thin heavy oil reservoirs[J]. Journal of Petroleum Science and Engineering, 2013, 112: 139–152. doi: 10.1016/j.petrol.2013.10.020
[21] SEYYEDSAR S M, FARZANEH S A, SOHRABI M. Enhanced heavy oil recovery by intermittent CO2 injection[R]. SPE 175140, 2015.
[22] SEYYEDSAR S M, FARZANEH S A, SOHRABI M. Experimental investigation of tertiary CO2 injection for enhanced heavy oil recovery[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 1205–1214. doi: 10.1016/j.jngse.2016.08.020
[23] HUANG Tuo, YANG Huaijun, LIAO Guangzhi, et al. Optimization of CO2 flooding strategy to enhance heavy oil recovery[R]. SPE 174480, 2015.
[24] FARZANEH S A, SEYYEDSAR S M, SOHRABI M. Enhanced heavy oil recovery by liquid CO2 injection under different injection strategies[R]. SPE 181635, 2016.
[25] 何金钢,王洪卫. 三类油层压裂驱油技术设计及效果研究[J]. 西南石油大学学报(自然科学版),2018,40(5):95–104. HE Jingang, WANG Hongwei. Design and effect of fracture-flooding in class Ⅲ oil reservoirs[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2018, 40(5): 95–104.
[26] 王锋. 压驱工艺优化及现场应用[J]. 石化技术,2022,29(4):10–11. doi: 10.3969/j.issn.1006-0235.2022.04.005 WANG Feng. Optimization of pressure drive technology and its field application[J]. Petrochemical Industry Technology, 2022, 29(4): 10–11. doi: 10.3969/j.issn.1006-0235.2022.04.005
[27] 高建东. 牛35区块压驱注水方案设计及应用[J]. 内江科技,2022,43(4):28–29. doi: 10.3969/j.issn.1006-1436.2022.4.neijkj202204019 GAO Jiandong. Design and application of pressure flooding water injection scheme in Niu35 block[J]. Neijiang Technology, 2022, 43(4): 28–29. doi: 10.3969/j.issn.1006-1436.2022.4.neijkj202204019
[28] 王静,蒋明,向洪,等. 鄯善油田三类油层压驱新工艺的研究与应用[J]. 石油工业技术监督,2020,36(12):6–9. doi: 10.3969/j.issn.1004-1346.2020.12.002 WANG Jing, JIANG Ming, XIANG Hong, et al. Research and application of a new fracturing-flooding technology for Ⅲ-type reservoirs in Shanshan Oilfield[J]. Technology Supervision in Petroleum Industry, 2020, 36(12): 6–9. doi: 10.3969/j.issn.1004-1346.2020.12.002
[29] 张翼飞,杨勇,孙志刚,等. 低渗透油藏压驱物理模拟与裂缝定量表征[J]. 油气地质与采收率,2022,29(4):143–149. ZHANG Yifei, YANG Yong, SUN Zhigang, et al. Physical simulation of fracturing-flooding and quantitative characterization of fractures in low-permeability oil reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(4): 143–149.
[30] 刘义坤,王凤娇,汪玉梅,等. 中低渗透储集层压驱提高采收率机理[J]. 石油勘探与开发,2022,49(4):752–759. LIU Yikun, WANG Fengjiao, WANG Yumei, et al. The mechanism of hydraulic fracturing assisted oil displacement to enhance oil recovery in low and medium permeability reservoirs[J]. Petroleum Exploration and Development, 2022, 49(4): 752–759.
[31] 王凤娇,孟详昊,刘义坤,等. 致密储层压驱焖井阶段渗吸机理分子模拟研究[J]. 力学学报,2024,56(6):1624–1634. doi: 10.6052/0459-1879-24-026 WANG Fengjiao, MENG Xianghao, LIU Yikun, et al. The shut-in imbibition mechanism of hydraulic fracturing-assisted oil displacement in tight reservoirs based on molecular simulation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(6): 1624–1634. doi: 10.6052/0459-1879-24-026
[32] 崔传智,王俊康,吴忠维,等. 致密油藏压驱动态裂缝模型建立及应用[J]. 特种油气藏,2023,30(4):87–95. doi: 10.3969/j.issn.1006-6535.2023.04.011 CUI Chuanzhi, WANG Junkang, WU Zhongwei, et al. Establishment and application of pressure drive dynamic fracture model for tight oil reservoirs[J]. Special Oil & Gas Reservoirs, 2023, 30(4): 87–95. doi: 10.3969/j.issn.1006-6535.2023.04.011
[33] 张莉,祝仰文,王友启. 稠油热采新技术研究现状及展望[J]. 钻采工艺,2023,46(4):64–70. doi: 10.3969/J.ISSN.1006-768X.2023.04.11 ZHANG Li, ZHU Yangwen, WANG Youqi. Research status and prospects of new technology of heavy oil thermal recovery[J]. Drilling & Production Technology, 2023, 46(4): 64–70. doi: 10.3969/J.ISSN.1006-768X.2023.04.11
[34] 郭建春,马莅,卢聪. 中国致密油藏压裂驱油技术进展及发展方向[J]. 石油学报,2022,43(12):1788–1797. GUO Jianchun, MA Li, LU Cong. Progress and development directions of fracturing flooding technology for tight reservoirs in China[J]. Acta Petrolei Sinica, 2022, 43(12): 1788–1797.
[35] 高东华. 唐19-12断块稠油油藏高效滚动开发面临的难点问题及对策[J]. 中国石油和化工标准与质量,2023,43(3):19–21. doi: 10.3969/j.issn.1673-4076.2023.03.007 GAO Donghua. The difficulties and countermeasures of high-efficiency rolling development of heavy oil reservoir in Tang19-12 fault block[J]. China Petroleum and Chemical Standard and Quality, 2023, 43(3): 19–21. doi: 10.3969/j.issn.1673-4076.2023.03.007
-
期刊类型引用(1)
1. 李中, 郭永宾, 管申, 刘智勤, 彭巍. 涠洲K油田复杂工况旋转尾管固井技术. 钻井液与完井液. 2019(01): 87-92 . 百度学术
其他类型引用(0)