枯竭油气藏与新能源融合发展技术进展与发展建议

闫娜

闫娜. 枯竭油气藏与新能源融合发展技术进展与发展建议[J]. 石油钻探技术,2024,52(3):146-152. DOI: 10.11911/syztjs.2024058
引用本文: 闫娜. 枯竭油气藏与新能源融合发展技术进展与发展建议[J]. 石油钻探技术,2024,52(3):146-152. DOI: 10.11911/syztjs.2024058
YAN Na. Technological progress and development suggestions on integrated development of depleted oil & gas reservoirs and new energy [J]. Petroleum Drilling Techniques, 2024, 52(3):146-152. DOI: 10.11911/syztjs.2024058
Citation: YAN Na. Technological progress and development suggestions on integrated development of depleted oil & gas reservoirs and new energy [J]. Petroleum Drilling Techniques, 2024, 52(3):146-152. DOI: 10.11911/syztjs.2024058

枯竭油气藏与新能源融合发展技术进展与发展建议

基金项目: 中国石化科技战略研究项目“面向2035年的油气开发工程前沿技术战略研究”(编号:P20031)资助。
详细信息
    作者简介:

    闫娜(1976—),女,河北保定人,1998年毕业于河北大学统计专业,2001年获北京师范大学国际经济专业硕士学位,2010年获中国石油大学(北京)石油工程管理专业博士学位,副研究员,主要从事石油工程技术经济评价及战略规划研究。E-mail:yanna.sripe@sinopec.com

  • 中图分类号: TE0;X741

Technological Progress and Development Suggestions on Integrated Development of Depleted Oil & Gas Reservoirs and New Energy

  • 摘要:

    油气资源与新能源融合发展是新型能源体系建设的重要特征。在分析枯竭油气藏与新能源融合发展主要优势的基础上,调研了国内外利用枯竭油气藏开发地热能、储能、储氢、采氢、开采锂金属等方面的研究进展。调研发现,由于技术可移植借鉴的程度不同,枯竭油气藏与新能源融合的技术发展成熟度有很大差异。其中,利用枯竭油气藏开发地热能的可行性已经过充分验证,枯竭油气藏储能处于现场试验阶段,枯竭油气藏储氢处于前期探索阶段,少数公司开展了枯竭油气藏开采氢及锂的研究,可行性还没有得到验证。基于调研结果,提出了推动枯竭油气藏与新能源融合发展的主要建议:进行枯竭油气藏现状普查,建立相关信息共享平台;开展广泛协同研究,推动技术迅速突破;开展示范试点,形成枯竭油气藏资源化利用标准;探索枯竭油气藏资源化利用商业模式,实现低碳发展。

    Abstract:

    The integrated development of oil & gas resources and new energy is an important feature of building a new energy system. This study analyzes the main advantages of integrating depleted oil & gas reservoirs with new energy sources and reviews research progress in utilizing these reservoirs for geothermal energy, energy storage, hydrogen storage, hydrogen production, and lithium metal mining, both in China and abroad. The research results show that due to the different degrees of technology portability and reference, the technology maturity of integrated development of depleted oil & gas reservoirs and new energy is different. The feasibility of exploiting geothermal resources by utilizing depleted oil & gas reservoirs has been fully verified, the energy storage of depleted oil & gas reservoirs is currently undergoing verification, while hydrogen storage in depleted oil & gas reservoirs is in the early exploratory stage. Researches into extracting hydrogen and lithium from depleted oil & gas reservoirs have been carried out by a few companies, with the feasibility unproven. Based on the survey results, the main suggestions for promoting the integrating depleted oil & gas reservoirs with new energy are put forward: surveying current depleted oil & gas reservoirs to establish the relevant information sharing platform; conducting extensive collaborative research to promote rapid technological breakthroughs; implementing demonstration and pilot projects to form utilization standards for the resources of depleted oil & gas reservoirs; exploring the business modes for resource utilization of depleted oil & gas reservoirs to achieve low-carbon development.

  • 油田长期注水开发导致地层的非均质性加剧,注入水沿高渗透层突入油井,导致油井含水率升高、产油量降低,增产稳产面临的难度很大。注水井深部调剖是油田稳产增产的重要技术措施之一,但对调剖剂的要求较高。冻胶型堵剂具有成胶时间可调、成胶强度高和价格便宜的特点,在油田调剖作业中得到了广泛的应用,但冻胶在注入地层的过程中受机械剪切、色谱分离和地层水稀释等多种因素的影响,其成冻时间、形成冻胶的强度和进入地层的深度难以控制,导致冻胶在地下的成胶效果变差,影响了调剖效果和有效期[1-7]。为解决以上问题,将水膨体发展为地面成胶体系,解决了地下成胶效果不可控的问题,但其初始粒径较大、且制备工艺复杂,影响了其在海上油田调剖调驱中的应用[8-12]。近年来发展起来聚合物微球调驱技术很好地解决了上述问题,但其采用乳液聚合方式进行制备,要求引发时间、聚合时间及聚合温度精准,对制备设备要求高,制备工艺相对复杂,不能在线生成注入,且合成原料中包含表面活性剂,增大了制备成本[13-16]

    针对目前冻胶、水膨体和聚合物微球调剖存在的问题,笔者采用机械剪切法制备了一种新的海上油田剖面调整用分散共聚物颗粒体系,不仅具有冻胶的特点,还不受地面剪切、稀释和色谱分离等因素的影响,能够变形进入地层深部,封堵地层深部的大孔道,调整渗流剖面,实现深部液流转向。同时,对制备工艺进行了探索和优化,为分散共聚物颗粒体系的现场应用奠定了基础。

    根据共聚物黏度的变化情况,制备过程分为共聚物制备和分散共聚物颗粒制备2个阶段。

    化学材料:丙烯酰胺(AM),工业品;丙烯酸,工业品;N, N亚甲基双丙烯酰胺(MBA),分析纯;AMPS,分析纯;其余试剂均为分析纯。

    以丙烯酰胺为主要原料,按比例加入其他添加剂,在水中溶解后置于65 ℃恒温水浴中,聚合物进行交联反应,形成黏度极高的高分子聚合物。其交联反应式为:

    共聚物形成阶段分为引发阶段、快速交联阶段和稳定阶段。共聚物成胶后,形成三维凝胶网络结构,黏度不再增加。单体AM质量分数选用3%~6%,AM与MBA的质量比为250∶1~100∶1。不同AM/MBA质量比的共聚物样品合成时间及合成后的黏度如表1所示。

    表  1  共聚物的制备参数
    Table  1.  Preparation parameters of the copolymer
    AM质量分数,
    %
    AM/MBA
    质量比
    合成时间/
    h
    共聚物黏度/
    (mPa·s)
    5167∶12.016 460
    5250∶12.515 320
    下载: 导出CSV 
    | 显示表格

    分散共聚物颗粒形成阶段分为破碎阶段、研磨阶段和稳定阶段,研磨转速为1 000 r/min,研磨时间为3~15 min,制得不同粒径分布的均一分散共聚物颗粒水相溶液。为了更好地了解影响分散共聚物颗粒制备的因素,测试了制备过程中体系黏度、粒径分布的变化情况。

    分散共聚物颗粒制备过程中,体系黏度的变化是表征其性能的主要指标。研磨时间为1,5,10和15 min时的黏度分别为9.8,3.9,3.8和3.7 mPa·s。由此可以看出,将共聚物溶液(AM质量分数为5%,AM/MBA质量比为250∶1)加入胶体磨中高速研磨,其黏度在5 min后就迅速降至5.0 mPa·s以下,得到分散共聚物颗粒。

    使用马尔文3000激光粒度仪测试分散共聚物颗粒溶液的粒径分布情况,测量前使用蒸馏水将分散共聚物颗粒溶液稀释至400 mg/L,每个待测样品测3个平行样,得到研磨时间对体系粒径分布的影响结果,如图1表2所示。

    图  1  分散共聚物颗粒的粒径分布随研磨时间变化情况
    Figure  1.  The change of particle size distribution of dispersed copolymer with grinding time
    表  2  分散共聚物颗粒粒径随研磨时间的变化
    Table  2.  Viscosity change of dispersed copolymer particles in grinding process
    剪切时间/min平均粒径/μm最大粒径/μm最小粒径/μm
    11 520.03 080.031.1
    5 135.0 352.0 4.6
    下载: 导出CSV 
    | 显示表格

    图1可以看出,研磨1 min时,体系的粒径分布范围较广,平均粒径为1 520 μm;持续研磨5 min后,体系的粒径分布变窄,平均粒径降至135 μm,说明分散共聚物颗粒制备过程中,随着研磨时间增长,体系粒径分布更为均一。另外,从表2可以看出,最大粒径与最小粒径的比值随着研磨时间增长而降低,进一步验证了以上结果。

    采用双狭缝模型,剪切速率变化范围为1~1 000 s–1,测试质量分数为3%的分散共聚物颗粒溶液的黏度随剪切速率的变化情况。试验采用模拟垦利油田注入水,总矿化度4 485.0 mg/L,钙镁离子含量为71.0 mg/L,pH值为7.34。使用Anton Paar旋转流变仪,测定了65 ℃下分散共聚物颗粒溶液的流变性能,结果见图2。由图2可知,在低剪切速率下,分散共聚物颗粒溶液的黏度随剪切速率升高而降低;在中剪切速率下,其溶液黏度基本不受剪切速率的影响,呈现出牛顿流体的性质;在高剪切流动状态下,其溶液黏度随剪切速率升高而略有升高。分析认为,在高剪切速率下,分散共聚物不断重新排布、相互碰撞而形成网状结构,导致黏度略有升高。剪切速率为1~1 000 s–1时,3%分散共聚物颗粒溶液的黏度低于6.0 mPa·s;剪切速率为7.34 s–1时,其溶液黏度为1.1 mPa·s,略高于水。

    图  2  3%分散共聚物颗粒溶液的流变曲线
    Figure  2.  Rheological curve of 3% dispersed copolymer particles solution

    使用Turbiscan多重光稳定性分析仪,将质量分数为3%的分散共聚物颗粒溶液放入分析仪中,每间隔15 min,对测试样品从底部到顶部扫描一次,测试其背散射光强和透射光强,并据此直接计算得到测试样品的稳定性动力学指数。稳定性动力学指数累计了测试样品所有光强的变化,反映了测试样品的稳定程度。稳定性动力学指数越大,测试样品越不稳定;稳定性动力学指数小于3.0时,测试样品的稳定性较好。采用高级分析模块,计算分散共聚物颗粒溶液的稳定性动力学指数,得到其稳定性动力学指数随时间的变化,如图3所示。

    图  3  60 ℃下的分散共聚物颗粒溶液稳定性动力学指数测试结果
    Figure  3.  The test results of stable dynamic index for dispersed copolymer particles solution at 60 ℃

    图3可以看出,分散共聚物颗粒溶液的稳定性动力学指数小于3.0,性能较为稳定,分散共聚物颗粒溶液从井口注入后运移至井筒及近井地带期间能够保持良好的分散稳定性能,不会发生沉降聚集。

    采用填砂管驱替装置,填砂管长度50.0 cm,渗透率5 000 mD左右,测试相同用量条件下分散共聚物颗粒体系和聚合物凝胶体系在多孔介质内的封堵情况。在模拟地层温度下,以2.0 mL/min的注入速度,分别注入1.0倍孔隙体积的分散共聚物颗粒体系和聚合物凝胶体系,记录注入压力的变化情况。后续水驱至压力平稳,记录后续水驱阶段压力的响应情况,结果如图4所示。

    图  4  分散共聚物颗粒和聚合物凝胶体系入口压力随注入量的变化曲线
    Figure  4.  Variation of inlet pressure of dispersed copolymer particles and polymer gel systems with the injection volume

    图4可以看出,在用量相同条件下,注入1.0倍孔隙体积的1 500 mg/L聚合物凝胶体系时,注入压力升至0.1 MPa;注入1.0倍孔隙体积的分散共聚物颗粒体系时,注入压力升至0.5 MPa。后续水驱阶段,2种体系均显示出较高的残余阻力系数,其中,聚合物凝胶体系的注入压力升至0.9 MPa,分散共聚物颗粒体系的注入压力升至2.8 MPa。

    因此,渗透率大于5 000 mD的高渗透储层进行剖面调整时,在调剖剂用量相同的条件下,分散共聚物颗粒体系具有更低的注入压力,即具有更优的注入性能和更强的封堵能力。

    填砂模型封堵性试验结果表明,分散共聚合颗粒体系具有良好的封堵性能,为了更真实地反映其在地层条件下的封堵性,开展了长填砂管条件下的封堵运移性试验。采用10.00 m填砂模型进行长距离运移性试验,模型渗透率为6 009 mD,沿填砂管均布5个测压点,评价其深部运移及封堵性能。

    试验时首先以1.5 mL/min的注入速度向填砂模型内注入地层水,至模型内部压力平稳;然后再以1.5 mL/min的注入速度向填砂模型内注入1.0倍孔隙体积的分散共聚物颗粒体系;关闭注入端和采出端,在65 ℃恒温箱中放置10 d,再以1.5 mL/min的注入速度向填砂模型内注入后续水,记录驱替过程中压力的变化情况,结果见图5

    图  5  后续水驱阶段模型内部压力的变化
    Figure  5.  Pressure change inside the model in the subsequent water flooding stage

    图5可以看出,开始注水后,各测压点的压力迅速上升;上升至一定压力后,压力逐渐降低;后续水突破后,距离注入端越远,压力下降越缓慢。这说明分散共聚合颗粒被注入水突破后,封堵体系在填砂模型内仍保持良好的封堵性能。因此,在模拟地层条件下,分散共聚物颗粒体系对于渗透率大于5 000 mD的高渗透储层具有良好的运移性和封堵性。

    1)通过采用特殊的交联技术和分散技术,形成的高黏聚合物经研磨后,制得纳米–微米级的均一分散水溶液。

    2)通过调节主剂AM的质量分数和AM/MBA的质量比,可得到不同粒径分布的分散共聚物颗粒溶液;其初始黏度可控制在10 mPa·s以内,具有良好的注入性、深部运移性和对高渗透储层的有效封堵性能;制备的分散共聚物颗粒溶液经高速剪切后,黏度和粒度变化较小,表现出良好的抗剪切性能。

    3)分散共聚物颗粒体系的黏度可控,工艺上可实现在线注入,可进入地层深部,对高渗透地层具有较好的封堵效果,可实现深部调剖。

  • 图  1   低焓地热能系统

    Figure  1.   Low-enthalpy geothermal energy system

    图  2   二氧化碳羽流系统开采废弃井地热基本原理

    Figure  2.   Basic principle of geothermal energy exploitation in abandoned wells by CO2 plume system

    图  3   压缩天然气储能技术基本原理

    Figure  3.   Basic principle of compressed natural gas energy storage technology

    图  4   Quidnet公司的泵压水力储能基本原理

    Figure  4.   Basic principle of hydraulic pump pressure energy storage by Quidnet

    图  5   “EarthStore”系统泵压储能原理

    Figure  5.   Principle of pump pressure energy storage of "EarthStore" system

    图  6   井下原位燃烧制氢基本原理

    Figure  6.   Basic principle of hydrogen production by in-situ combustion

  • [1] 师琰. 全球现有油田产量正以9%的自然递减率下滑[EB/OL]. (2008-11-15)[2024-01-20].https://finance.sina.com.cn/money/future/futuresnyzx/20081115/02105510196.shtml.

    SHI Yan. Global oilfield production is currently declining at a natural rate of 9% [EB/OL]. (2008-11-15)[2024-01-20].https://finance.sina.com.cn/money/future/futuresnyzx/20081115/02105510196.shtml.

    [2] 陆晓如,董喆. 重回2亿吨,石油人做对了什么[EB/OL]. (2023-02-21)[2024-01-20].https://baijiahao.baidu.com/s?id=1758422404177586598&wfr=spider&for=pc.

    LU Xiaoru, DONG Zhe. Returning 200 million tons, what did the oil man do right[EB/OL]. (2023-02-21)[2024-01-20].https://baijiahao.baidu.com/s?id=1758422404177586598&wfr=spider&for=pc.

    [3] 贡晓丽,张超. 北美页岩气革命欠下的环境债,恐怕要全世界一起还了[EB/OL]. (2020-07-15)[2024-01-10].https://baijiahao.baidu.com/s?id=1672298877076288307&wfr=spider&for=pc.

    GONG Xiaoli, ZHANG Chao. The environmental debt owed by the North American shale gas revolution may have to be repaid by the whole world together[EB/OL]. (2020-07-15)[2024-01-10].https://baijiahao.baidu.com/s?id=1672298877076288307&wfr=spider&for=pc.

    [4] 吕建中. 保障能源安全需做好传统能源与新能源战略协同[J]. 世界石油工业,2022,29(2):1–6.

    LYU Jianzhong. Necessary to coordinate traditional and new energy strategies to ensure energy security[J]. World Petroleum Industry, 2022, 29(2): 1–6.

    [5]

    MARSH M. New Brunswick onshore oil and natural gas well abandonment study[EB/OL]. [2024-01-10].https://dokumen.tips/documents/new-brunswick-onshore-oil-and-natural-gas-well-abandonment-coiled-tubing-can.html?page=1.

    [6]

    KOOFFREHA B E, ANYATANG B F I. Abandonment/decommissioning under nigerian legal regimes: a comparative analysis [EB/OL]. (2020-12-04) [2024-01-10]. http://ensani.ir/file/download/article/1621232043-10362-2020-12-4.pdf.

    [7]

    KANT A. Oilfield abandonment and soil restoration in the Netherlands, experiences for the future[R]. SPE 126956, 2010.

    [8]

    PRASETYA A E, RAKHMAHWIDIATI R, HUTABARAT R D. Plug and abandonment procedures for onshore wells and the utilization of reserved abandonment and site restoration ASR funds[R]. SPE 193956, 2018.

    [9]

    BROWN D W. A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water[C]//Proceedings, Twenty-Fifth Workshop on Geothermal Reservoir Engineering, January 24-26, 2000, Stanford University, Palo Alto, California: 1-6.

    [10]

    PRUESS K. Enhanced geothermal systems (EGS) using CO2 as working fluid: a novel approach for generating renewable energy with simultaneous sequestration of carbon[J]. Geothermics, 2006, 35(4): 351–367. doi: 10.1016/j.geothermics.2006.08.002

    [11]

    ADAMS B M, KUEHN T H, BIELICKI J M, et al. On the importance of the thermosiphon effect in CPG (CO2 plume geothermal) power systems[J]. Energy, 2014, 69: 409–418. doi: 10.1016/j.energy.2014.03.032

    [12]

    LIANG Xi, REINER D, LI Jia. Perceptions of opinion leaders towards CCS demonstration projects in China[J]. Applied Energy, 2011, 88(5): 1873–1885. doi: 10.1016/j.apenergy.2010.10.034

    [13] 宋先知,许富强,宋国锋. 废弃井地热能开发技术现状与发展建议[J]. 石油钻探技术,2020,48(6):1–7. doi: 10.11911/syztjs.2020120

    SONG Xianzhi, XU Fuqiang, SONG Guofeng. Technical status and development suggestions in exploiting geothermal energy from abandoned wells[J]. Petroleum Drilling Techniques, 2020, 48(6): 1–7. doi: 10.11911/syztjs.2020120

    [14] 宋先知,许富强,姬佳炎,等. 多层合采油藏废弃井网取热性能评价[J]. 天然气工业,2022,42(4):54–62. doi: 10.3787/j.issn.1000-0976.2022.04.005

    SONG Xianzhi, XU Fuqiang, JI Jiayan, et al. Evaluation on the heat extraction performance of abandoned well pattern in multi-layer commingled production oil reservoirs[J]. Natural Gas Industry, 2022, 42(4): 54–62. doi: 10.3787/j.issn.1000-0976.2022.04.005

    [15] 崔国栋,任韶然,裘智超,等. 低渗废弃气藏注超临界CO2采热发电技术及经济性分析[J]. 石油学报,2022,43(1):156–166. doi: 10.7623/syxb202201012

    CUI Guodong, REN Shaoran, QIU Zhichao, et al. Technical and economic analysis of geothermal development and power generation by injecting supercritical CO2 in low-permeability depleted gas reservoirs[J]. Acta Petrolei Sinica, 2022, 43(1): 156–166. doi: 10.7623/syxb202201012

    [16] 郭朝斌,李采,杨利超,等. 压缩空气地质储能研究现状及工程案例分析[J]. 中国地质调查,2021,8(4):109–119.

    GUO Chaobin, LI Cai, YANG Lichao, et al. Research review and engineering case analysis of geological compressed air energy storage[J]. Geological Survey of China, 2021, 8(4): 109–119.

    [17]

    U. S. Department of Energy. Energy storage grand challenge roadmap[EB/OL]. (2020-12-21)[2024-01-20].https://www.energy.gov/sites/default/files/2020/12/f81/Energy%20Storage%20Grand%20Challenge%20Roadmap.pdf.

    [18]

    Quidnet Energy. Quidnet’s breakthrough energy storage technology is enabling the zero-carbon grid[EB/OL]. [2024-01-17].https://quidnetenergy.com/.

    [19]

    Sage Geosystems. What makes Sage Geosystems different?[EB/OL]. [2024-01-17].https://www.sagegeosystems.com/.

    [20] 潘松圻,邹才能,王杭州,等. 地下储氢库发展现状及气藏型储氢库高效建库十大技术挑战[J]. 天然气工业,2023,43(11):164–180.

    PAN Songqi, ZOU Caineng, WANG Hangzhou, et al. Development status of underground hydrogen storages and top ten technical challenges to efficient construction of gas reservoir-type underground hydrogen storages[J]. Natural Gas Industry, 2023, 43(11): 164–180.

    [21] 周庆凡,张俊法. 地下储氢技术研究综述[J]. 油气与新能源,2022,34(4):1–6. doi: 10.3969/j.issn.2097-0021.2022.04.001

    ZHOU Qingfan, ZHANG Junfa. Review of underground hydrogen storage technology[J]. Petroleum and New Energy, 2022, 34(4): 1–6. doi: 10.3969/j.issn.2097-0021.2022.04.001

    [22] 刘翠伟,洪伟民,王多才,等. 地下储氢技术研究进展[J]. 油气储运,2023,42(8):841–855.

    LIU Cuiwei, HONG Weimin, WANG Duocai, et al. Research progress of underground hydrogen storage technology[J]. Oil & Gas Storage and Transportation, 2023, 42(8): 841–855.

    [23] 罗小明,贾子寒,张宏阳. 枯竭油气藏地下储氢技术挑战及展望[J]. 油气储运,2023,42(9):1009–1023.

    LUO Xiaoming, JIA Zihan, ZHANG Hongyang. Technical challenges and outlook of underground hydrogen storage in depleted oil and gas reservoirs[J]. Oil & Gas Storage and Transportation, 2023, 42(9): 1009–1023.

    [24]

    Proton Technologies. H2 recovery[EB/OL]. [2024-01-20].https://www.proton-technologies.com/markets/h2-recovery/.

    [25]

    Cemvita. Cemvita’s successful field test demonstrates gold Hydrogen™ production in situ [EB/OL]. (2022-09-27)[2024-01-20].https://www.cemvita.com/news/cemvitas-successful-field-test-demonstrates-gold-hydrogen-tm-production-in-situ.

    [26]

    PARASKOVA T. Abandoned oil wells offer new source of lithium[EB/OL]. (2023-04-22)[2024-02-15].https://oilprice.com/Metals/Commodities/Abandoned-Oil-Wells-Offer-New-Source-Of-Lithium.html.

    [27] 赵紫伊,周雪,王铁夫,等. 油气田采出水锂资源回收可行性、技术现状及展望[J]. 环境工程技术学报,2023,13(4):1434–1443. doi: 10.12153/j.issn.1674-991X.20221190

    ZHAO Ziyi, ZHOU Xue, WANG Tiefu, et al. Feasibility, technical status and prospects of lithium recovery from produced water in oil and gas fields[J]. Journal of Environmental Engineering Technology, 2023, 13(4): 1434–1443. doi: 10.12153/j.issn.1674-991X.20221190

    [28]

    CHEN Xi, YANG Meiqi, ZHENG Sunxiang, et al. Spatially separated crystallization for selective lithium extraction from saline water[J]. Nature Water, 2023, 1(9): 808–817. doi: 10.1038/s44221-023-00131-3

  • 期刊类型引用(1)

    1. 贾志伟,程长坤,朱秀雨,濮兰天,韩宇,扈福堂. 青海油田尕斯N_1–N_2~1超高盐油藏复合驱提高采收率技术. 石油钻探技术. 2021(05): 81-87 . 本站查看

    其他类型引用(0)

图(6)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 1
出版历程
  • 收稿日期:  2024-04-27
  • 修回日期:  2024-05-09
  • 录用日期:  2024-05-16
  • 网络出版日期:  2024-05-19
  • 刊出日期:  2024-05-24

目录

/

返回文章
返回