粗糙裂缝内支撑剂运移与展布规律数值模拟

刘善勇, 尹彪, 楼一珊, 张艳

刘善勇,尹彪,楼一珊,等. 粗糙裂缝内支撑剂运移与展布规律数值模拟[J]. 石油钻探技术,2024,52(4):104-109. DOI: 10.11911/syztjs.2024057
引用本文: 刘善勇,尹彪,楼一珊,等. 粗糙裂缝内支撑剂运移与展布规律数值模拟[J]. 石油钻探技术,2024,52(4):104-109. DOI: 10.11911/syztjs.2024057
LIU Shanyong, YIN Biao, LOU Yishan, et al. Numerical simulation of migration and placement law of proppants in rough fractures [J]. Petroleum Drilling Techniques, 2024, 52(4):104-109. DOI: 10.11911/syztjs.2024057
Citation: LIU Shanyong, YIN Biao, LOU Yishan, et al. Numerical simulation of migration and placement law of proppants in rough fractures [J]. Petroleum Drilling Techniques, 2024, 52(4):104-109. DOI: 10.11911/syztjs.2024057

粗糙裂缝内支撑剂运移与展布规律数值模拟

基金项目: 油气钻采工程湖北省重点实验开放基金项目“深部低渗储层粗糙裂缝内支撑剂运移与展布行为机理研究”(编号:YQZC202410)、中国海洋石油有限公司“十四五”重大科技项目“海上低渗及潜山油气田有效开发技术”(编号:KJGG2022-0701)联合资助。
详细信息
    作者简介:

    刘善勇(1987—),男,湖北荆州人,2010年毕业于长江大学石油工程专业,2017年获长江大学油气井工程专业博士学位,副教授,主要从事岩石力学及储层改造工艺技术方面的研究。系本刊青年编委。E-mail:liushanyong@yangtzeu.edu.cn

    通讯作者:

    尹彪,2022730006@yangtzeu.edu.cn

  • 中图分类号: TE357.12

Numerical Simulation of Migration and Placement Law of Proppants in Rough Fractures

  • 摘要:

    粗糙狭窄裂缝壁面造成水力压裂有效裂缝体积减小,极大地影响缝内支撑剂运移与铺置和压裂改造效果。为此,采用Matlab建立自相关高斯分布曲面,并结合分形理论识别分析裂缝粗糙面,采用计算流体动力学—颗粒元(CFD-DEM)双向耦合方法,建立了不同粗糙度的裂缝三维模型,分析了不同支撑剂粒径组合在不同粗糙度缝道内的沉积和运移过程及规律。研究表明:随着缝面由平滑向粗糙变化,支撑剂堵塞明显;在重力作用下小粒径支撑剂(粒径与缝宽比为0.3)具有出更好的运移能力,但难以保证近井端支撑效果;大粒径支撑剂(粒径与缝宽比为0.8)覆盖面积增加158.1%,堵塞于缝口附近,影响后续支撑剂向远处运移,推荐粒径缝宽比为0.4;对于组合粒径加砂方式,推荐采用“先小后大”的注入顺序,以保证支撑剂运移距离和效率。研究结果有助于更好地理解裂缝粗糙度对支撑剂在裂缝中运移的影响,对压裂设计及施工参数优化具有指导意义。

    Abstract:

    The rough and narrow fracture walls reduce the effective fracture volume of hydraulic fracturing, which greatly affects the migration and placement of proppants in the fractures and the effect of fracturing stimulation. Therefore, the self-correlated Gaussian distribution surface was established by Matlab, and the rough fracture surface was identified and analyzed with fractal theory. The bidirectional coupling of the computational fluid dynamics-discrete element method (CFD-DEM) was employed to build three-dimensional models of fractures with different roughness, and the deposition and migration process and law of different combinations of proppant diameters within the rough fracture channels were investigated. The research findings indicate that as the fractured surface transitions from smooth to rough, proppant plugging becomes more evident. Under the influence of gravity, small-sized proppants (ratio of diameter to fracture width of 0.3) exhibit better migration capabilities but struggled to ensure the near-wellbore supporting effect. The area covered by large-sized proppants (ratio of diameter to fracture width of 0.8) increase by 158.1%, but the proppant is blocked near the fracture end, affecting subsequent proppant migration to distant areas. Therefore, the recommended ratio of diameter to fracture width is 0.4. For the sand addition method with combined particle diameters, it is recommended to inject small-sized sand first and then large-sized sand to ensure the proppant migration distance and efficiency. The research outcomes contribute to a better understanding of the influence of fracture roughness on proppant migration within fractures, providing important guidance for optimizing fracturing design and operation parameters.

  • 图  1   模拟流程[23]

    Figure  1.   Simulation flow chart[23]

    图  2   分形维数计算流程

    Figure  2.   Fractal dimension calculation process

    图  3   模型边界条件

    Figure  3.   Boundary condition of model

    图  4   网格无关性验证

    Figure  4.   Grid independence verification

    图  5   支撑剂颗粒平均沉降速度

    Figure  5.   Average settling velocity of proppant particles

    图  6   粗糙裂缝内颗粒沉降情况

    Figure  6.   Particle deposition in rough fractures

    图  7   支撑剂在粗糙裂缝内的分布情况

    Figure  7.   Distribution of proppants in rough fractures

    图  8   不同粒径支撑剂的体积分数分布

    Figure  8.   Distribution of proppant volume fraction with different particle diameters

    图  9   混合粒径支撑剂在粗糙裂缝内的运移规律

    Figure  9.   Migration law of mixed particle size proppants in rough fcracture

  • [1] 路保平. 中国石化石油工程技术新进展与发展建议[J]. 石油钻探技术,2021,49(1):1–10.

    LU Baoping. New progress and development proposals of Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techniques, 2021, 49(1): 1–10.

    [2] 程鑫,柴小颖,杨会洁,等. 尖北气田基岩构造裂缝特征及其对储层的影响[J]. 西南石油大学学报(自然科学版),2023,45(6):18–30. doi: 10.11885/j.issn.1674-5086.2021.12.21.02

    CHENG Xin, CHAI Xiaoying, YANG Huijie, et al. Structural fracture characteristics of basement rocks in Jianbei Gas Field and its reservoir improvement effect[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(6): 18–30. doi: 10.11885/j.issn.1674-5086.2021.12.21.02

    [3] 舒红林,刘臣,李志强,等. 昭通浅层页岩气压裂复杂裂缝扩展数值模拟研究[J]. 石油钻探技术,2023,51(6):77–84.

    SHU Honglin, LIU Chen, LI Zhiqiang, et al. Numerical simulation of complex fracture propagation in shallow shale gas fracturing in Zhaotong[J]. Petroleum Drilling Techniques, 2023, 51(6): 77–84.

    [4] 唐圣来. 基于嵌入式多尺度裂缝模型的地质建模方法及应用[J]. 特种油气藏,2023,30(1):36–40.

    TANG Shenglai. Geological modeling method and its application based on embedded multi-scale fracture model[J]. Special Oil & Gas Reservoirs, 2023, 30(1): 36–40.

    [5] 潘林华,王海波,贺甲元,等. 水力压裂支撑剂运移与展布模拟研究进展[J]. 天然气工业,2020,40(10):54–65.

    PAN Linhua, WANG Haibo, HE Jiayuan, et al. Progress of simulation study on the migration and distribution of proppants in hydraulic fractures[J]. Natural Gas Industry, 2020, 40(10): 54–65.

    [6] 耿宇迪,蒋廷学,刘志远,等. 深层缝洞型碳酸盐岩储层水力裂缝扩展机理研究[J]. 石油钻探技术,2023,51(2):81–89.

    GENG Yudi, JIANG Tingxue, LIU Zhiyuan, et al. Mechanism of hydraulic fracture propagation in deep fracture-cavity carbonate reservoirs[J]. Petroleum Drilling Techniques, 2023, 51(2): 81–89.

    [7] 宋丽阳,王纪伟,刘长印,等. 低渗砂泥交互油藏压裂多裂缝扩展规律[J]. 断块油气田,2023,30(1):25–30.

    SONG Liyang, WANG Jiwei, LIU Changyin, et al. Multi-fractures propagation law of low permeability sand shale interbed oil reservoirs fracturing[J]. Fault-Block Oil & Gas Field, 2023, 30(1): 25–30.

    [8] 吴百烈,彭成勇,武广瑷,等. 可压性指数对压裂裂缝扩展规律的影响研究:以南海LF油田为例[J]. 石油钻探技术,2023,51(3):105–112.

    WU Bailie, PENG Chengyong, WU Guang'ai, et al. Effect of fracability index on fracture propagation: a case study of LF Oilfield in South China Sea[J]. Petroleum Drilling Techniques, 2023, 51(3): 105–112.

    [9] 蒋廷学,卞晓冰,侯磊,等. 粗糙裂缝内支撑剂运移铺置行为试验[J]. 中国石油大学学报(自然科学版),2021,45(6):95–101.

    JIANG Tingxue, BIAN Xiaobing, HOU Lei, et al. Experiment on proppant migration and placement behavior in rough fractures[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(6): 95–101.

    [10] 陈珂,于志豪,王守毅,等. 断层附近非均匀应力场页岩压裂缝网扩展模拟[J]. 断块油气田,2023,30(2):213–221.

    CHEN Ke, YU Zhihao, WANG Shouyi, et al. Shale fracture network propagation simulation in non-uniform stress field near fault[J]. Fault-Block Oil and Gas Field, 2023, 30(2): 213–221.

    [11] 吴峙颖,胡亚斐,蒋廷学,等. 孔洞型碳酸盐岩储层压裂裂缝转向扩展特征研究[J]. 石油钻探技术,2022,50(4):90–96. doi: 10.11911/syztjs.2022084

    WU Zhiying, HU Yafei, JIANG Tingxue, et al. Study on propagation and diversion characteristics of hydraulic fractures in vuggy carbonate reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(4): 90–96. doi: 10.11911/syztjs.2022084

    [12]

    WEN Qingzhi, WANG Shuting, DUAN Xiaofei, et al. Experimental investigation of proppant settling in complex hydraulic-natural fracture system in shale reservoirs[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 70–80. doi: 10.1016/j.jngse.2016.05.010

    [13]

    RAIMBAY A, BABADAGLI T, KURU E, et al. Quantitative and visual analysis of proppant transport in rough fractures[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 1291–1307. doi: 10.1016/j.jngse.2016.06.040

    [14] 郭天魁,曲占庆,李明忠,等. 大型复杂裂缝支撑剂运移铺置虚拟仿真装置的开发[J]. 实验室研究与探索,2018,37(10):242–246.

    GUO Tiankui, QU Zhanqing, LI Mingzhong, et al. Development of the large-scale virtual simulation experimental device of proppant transportation and placement in complex fractures[J]. Research and Exploration in Laboratory, 2018, 37(10): 242–246.

    [15]

    INYANG U A, NGUYEN P D, CORTEZ J. Development and field applications of highly conductive proppant-free channel fracturing method[R]. SPE 168996, 2014.

    [16]

    HUANG Hai, BABADAGLI T, LI H A, et al. Effect of injection parameters on proppant transport in rough vertical fractures: an experimental analysis on visual models[J]. Journal of Petroleum Science and Engineering, 2019, 180: 380–395. doi: 10.1016/j.petrol.2019.05.009

    [17]

    DONTSOV E V, PEIRCE A P. Proppant transport in hydraulic fracturing: crack tip screen-out in KGD and P3D models[J]. International Journal of Solids and Structures, 2015, 63: 206–218. doi: 10.1016/j.ijsolstr.2015.02.051

    [18] 温庆志,段晓飞,战永平,等. 支撑剂在复杂缝网中的沉降运移规律研究[J]. 西安石油大学学报(自然科学版),2016,31(1):79–84.

    WEN Qingzhi, DUAN Xiaofei, ZHAN Yongping, et al. Study on settlement and migration law of proppant in complex fracture network[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2016, 31(1): 79–84.

    [19]

    SHIOZAWA S, MCCLURE M. Simulation of proppant transport with gravitational settling and fracture closure in a three-dimensional hydraulic fracturing simulator[J]. Journal of Petroleum Science and Engineering, 2016, 138: 298–314. doi: 10.1016/j.petrol.2016.01.002

    [20]

    ZHANG Guodong, GUTIERREZ M, LI Mingzhong. A coupled CFD-DEM approach to model particle-fluid mixture transport between two parallel plates to improve understanding of proppant micromechanics in hydraulic fractures[J]. Powder Technology, 2017, 308: 235–248. doi: 10.1016/j.powtec.2016.11.055

    [21] 郭天魁,宫远志,刘晓强,等. 复杂裂缝中支撑剂运移铺置规律数值模拟[J]. 中国石油大学学报(自然科学版),2022,46(3):89–95.

    GUO Tiankui, GONG Yuanzhi, LIU Xiaoqiang, et al. Numerical simulation of proppant migration and distribution in complex fractures[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(3): 89–95.

    [22]

    LU Cong, MA Li, LI Zhili, et al. A novel hydraulic fracturing method based on the coupled CFD-DEM numerical simulation study[J]. Applied Sciences, 2020, 10(9): 3027. doi: 10.3390/app10093027

    [23]

    ZENG Junsheng, LI Heng, ZHANG Dongxiao. Numerical simulation of proppant transport in hydraulic fracture with the upscaling CFD-DEM method[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 264–277. doi: 10.1016/j.jngse.2016.05.030

    [24]

    WANG Xiaoyu, YAO Jun, GONG Liang, et al. Numerical simulations of proppant deposition and transport characteristics in hydraulic fractures and fracture networks[J]. Journal of Petroleum Science and Engineering, 2019, 183: 106401. doi: 10.1016/j.petrol.2019.106401

    [25]

    WEN C Y, YU Y H. Mechanics of fluidization[J]. Chemical Engineering Progress, Symposium Series, 1966, 62(1): 100–111.

    [26]

    BARTON N. Review of a new shear-strength criterion for rock joints[J]. Engineering Geology, 1973, 7(4): 287–332. doi: 10.1016/0013-7952(73)90013-6

    [27] 谢和平,PARISEAU W G. 岩石节理粗糙系数(JRC)的分形估计[J]. 中国科学(B辑),1994,24(5):524–530.

    XIE Heping, PARISEAU W G. Fractal estimation of rock joint roughness coefficient[J]. Science in China(Series B), 1994, 24(5): 524–530.

    [28]

    ZHANG Bo, PATHEGAMA GAMAGE R, ZHANG Chengpeng, et al. Hydrocarbon recovery: optimized CFD-DEM modeling of proppant transport in rough rock fractures[J]. Fuel, 2022, 311: 122560. doi: 10.1016/j.fuel.2021.122560

    [29]

    GUO Tiankui, LUO Zhilin, ZHOU Jin, et al. Numerical simulation on proppant migration and placement within the rough and complex fractures[J]. Petroleum Science, 2022, 19(5): 2268–2283. doi: 10.1016/j.petsci.2022.04.010

  • 期刊类型引用(5)

    1. 鞠明和,陶泽军,蔚立元,姜礼杰,郑彦龙,邹春江. 钢粒子迟滞重复冲击破岩硬岩损伤破裂特征研究. 岩土力学. 2024(04): 1242-1255 . 百度学术
    2. 李夕兵,郭懿德,陈江湛,黄麟淇. 岩体弱化方法及其在深部高应力硬岩机械化开采中的应用. 有色金属(矿山部分). 2024(06): 51-63 . 百度学术
    3. 纪国栋,周波,汪海阁,崔柳,王灵碧,王苏为. 粒子冲击钻井钻头设计与流场测试. 断块油气田. 2018(04): 521-524 . 百度学术
    4. 任福深,方天成,程晓泽,常玉连. 粒子射流冲击下破岩应力分析与破岩区域. 石油学报. 2018(09): 1070-1080 . 百度学术
    5. 王方祥,王瑞和,周卫东,李罗鹏. 粒子射流冲击破岩效果影响因素试验研究. 石油钻探技术. 2017(02): 40-45 . 本站查看

    其他类型引用(8)

图(9)
计量
  • 文章访问数:  213
  • HTML全文浏览量:  33
  • PDF下载量:  65
  • 被引次数: 13
出版历程
  • 收稿日期:  2023-12-04
  • 修回日期:  2024-04-30
  • 录用日期:  2024-07-16
  • 网络出版日期:  2024-07-18
  • 刊出日期:  2024-08-25

目录

    /

    返回文章
    返回